scholarly journals Progress in design of adsorption refrigeration systems. Evaporators

2019 ◽  
Vol 213 ◽  
pp. 02035
Author(s):  
Wojciech Kalawa ◽  
Karolina Grabowska ◽  
Karol Sztekler ◽  
Jarosław Krzywański ◽  
Marcin Sosnowski ◽  
...  

Adsorption heat pumps are becoming increasingly popular. Due to their design, they enable application of low-temperature heat sources. Evaporators for adsorption chillers make one of the basic design elements determining the correct operation of these devices. The specificity of operation in low pressures and temperatures is the reason why their design significantly differs from that of conventional evaporators. The pluralities of existing solutions as well as the lack of a systematic review of them cause difficulties in correct evaluation and choice of design. The paper presents the current state of art as well as a review of the existing solutions of evaporators used in adsorption heat pumps. The purpose of the review research is to present various solutions of evaporators as well as indicating their advantages and disadvantages in order facilitate the choice of the optimal design.

Author(s):  
Dalila Abbaz ◽  
Abla Chaker ◽  
Mahmoud Bourouis

Abstract Cascade adsorption refrigeration technology using high-temperature driving heat is a very promising option for low-temperature cooling applications due to the large temperature difference between the heat source and the cold distributed. The present work carried out a feasibility and parametric study in order to analyze the functioning of a cascading adsorption cycle using the working pair zeolite/ammonia in beds operating at high temperatures and activated carbon/ammonia in those operating at low temperatures. At the nominal thermal conditions, namely, heating, condensing, and evaporating temperatures of 280 °C, 35 °C, and (−5) °C, respectively, the coefficient of performance (COP) and the specific refrigerating capacity (SCP) of the cycle were 0.53 and 67.1 W/kg. When the driving temperature is varied from 260 °C to 320 °C, the COP increases by 57% and the SCP by 36%. The performance of the cascading adsorption cycle at negative evaporating temperatures is very satisfactory.


Author(s):  
Arthur Batista Martins Lott ◽  
Arthur Pacheco Luz ◽  
João Arthur Daconti Silva ◽  
Cristiana Maia ◽  
Sergio Hanriot

2021 ◽  
Vol 6 ◽  
pp. 100086
Author(s):  
Mujib L. Palash ◽  
Tahmid Hasan Rupam ◽  
Animesh Pal ◽  
Anutosh Chakraborty ◽  
Bidyut Baran Saha ◽  
...  

2021 ◽  
Vol 189 ◽  
pp. 116731
Author(s):  
Marcel Ulrich Ahrens ◽  
Sverre Stefanussen Foslie ◽  
Ole Marius Moen ◽  
Michael Bantle ◽  
Trygve Magne Eikevik

2021 ◽  
Vol 154 ◽  
pp. 106193
Author(s):  
Davide Palamara ◽  
Paolo Bruzzaniti ◽  
Luigi Calabrese ◽  
Edoardo Proverbio

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4625
Author(s):  
Alisa Freyre ◽  
Stefano Cozza ◽  
Matthias Rüetschi ◽  
Meinrad Bürer ◽  
Marlyne Sahakian ◽  
...  

In this paper, we perform a literature review on the current state of knowledge about homeowners in the context of the adoption of renewable heating systems. Despite a considerable number of studies about homeowners, homeowner–installer interactions, and ways to improve the effectiveness of renewable heating programs, based on homeowner knowledge, have not yet been studied in much detail. To address these knowledge gaps, we conduct a qualitative study on single-family house owners who installed heat pumps and took part in a renewable heating program in Geneva, Switzerland. We cover homeowner practices in choosing installers and heating system types, homeowners’ feedback about heat pump installation and use, as well as their experience in participation in the renewable heating program. Based on the literature review and the findings from the interviews, we provide the following recommendations on how to increase the effectiveness of renewable heating programs: (a) support for homeowners should not be limited to financial incentives; (b) partnership programs with installers could help to increase the quality of installation services and enable homeowners to choose qualified installers; and (c) assisting homeowners in pre-qualification and ex-post analysis, in learning how to operate their renewable heating systems and in solving problems during the post-installation period, can contribute to improved technology reputation, which can, in turn, increase technology uptake by other homeowners.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5652
Author(s):  
Oscar Banos ◽  
Sven Ohmann ◽  
Cornelia Breitkopf

Adsorption processes are of great interest in catalysis, material separation, and thermal management. In recent decades, adsorbents have been further investigated because of their applications in adsorption refrigeration, heat pumps, and thermal energy storage. Thus, there is an increasing need to determine the macroscopic properties of the adsorbent, specifically their adsorption/desorption capacity and speed, because these two factors determine the power and size of the corresponding adsorber. Many designs have been proposed, but there is still not a generally adopted technology for the analysis of those properties. In this paper, a novel instrument is described, which is capable of determining the macrokinetic properties of an adsorbent composite, with better control and higher accuracy than gravimetric, volumetric, or barometric installations, and lower price and complexity than spectroscopic installations. The design of the installation is detailed, highlighting the main challenges and critical factors. The two working modes of the installation are described, and one example is provided and analyzed for each of them.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


Sign in / Sign up

Export Citation Format

Share Document