scholarly journals NIKA2 observations around LBV stars Emission from stars and circumstellar material

2020 ◽  
Vol 228 ◽  
pp. 00023
Author(s):  
J. Ricardo Rizzo ◽  
Alessia Ritacco ◽  
Cristobal Bordiu

Luminous Blue Variable (LBV) stars are evolved massive objects, previous to core-collapse supernova. LBVs are characterized by photometric and spectroscopic variability, produced by strong and dense winds, mass-loss events and very intense UV radiation. LBVs strongly disturb their surroundings by heating and shocking, and produce important amounts of dust. The study of the circumstellar material is therefore crucial to understand how these massive stars evolve, and also to characterize their effects onto the interstellar medium. The versatility of NIKA2 is a key in providing simultaneous observations of both the stellar continuum and the extended, circumstellar contribution. The NIKA2 frequencies (150 and 260 GHz) are in the range where thermal dust and free-free emission compete, and hence NIKA2 has the capacity to provide key information about the spatial distribution of circumstellar ionized gas, warm dust and nearby dark clouds; non-thermal emission is also possible even at these high frequencies. We show the results of the first NIKA2 survey towards five LBVs. We detected emission from four stars, three of them immersed in tenuous circumstellar material. The spectral indices show a complex distribution and allowed us to separate and characterize different components. We also found nearby dark clouds, with spectral indices typical of thermal emission from dust. Spectral indices of the detected stars are negative and hard to be explained only by free-free processes. In one of the sources, G79.29+0.46, we also found a strong correlation of the 1mm and 2mm continuum emission with respect to nested molecular shells at ≈1 pc from the LBV. The spectral index in this region clearly separates four components: the LBV star, a bubble characterized by free-free emission, and a shell interacting with a nearby infrared dark cloud.

2019 ◽  
Vol 627 ◽  
pp. A58 ◽  
Author(s):  
N. L. Isequilla ◽  
M. Fernández-López ◽  
P. Benaglia ◽  
C. H. Ishwara-Chandra ◽  
S. del Palacio

We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at frequencies of 325 and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating evaporating gas globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.


1989 ◽  
Vol 136 ◽  
pp. 443-451 ◽  
Author(s):  
F. Yusef-Zadeh ◽  
Mark Morris ◽  
Ron Ekers

Sub-arcsecond (down to 0.1″ × 0.2″) radio continuum observations using the VLA2 in a number of configurations have been carried out in order to investigate the fine-scale morphological details of the ionized gas and the distribution of spectral index along the triskelian-shaped figure of Sgr A West. In addition to finding a number of isolated patches of thermally-emitting gas and an absorbing feature at λ6cm within three arcminutes of the Galactic center, we have observed:1) radio continuum emission from IRS-7, implying that the stellar wind from this supergiant is externally ionized. An improved position for this object was obtained.2) the circular mini-cavity located along the east-west bar of Sgr A West. This feature has a diameter of 2-arcseconds and may have been created by a spherical wind, the source of which is yet to be identified; the seemingly most plausible candidate, IRS-16, is offset by 3″ from the center of the cavity.Spectral index maps having a resolution of 0.7″ × 0.3″ were made from scaled array observations at λ2cm and 6cm. They show that the eastern arm has a spectral index near −0.1, while the northern arm and the bar have positive spectral indices, indicating perhaps a partial opacity effect. The spectral index of IRS-7 is +0.6, consistent with that expected from a completely ionized stellar wind.


2021 ◽  
Vol 923 (2) ◽  
pp. 263
Author(s):  
A. P. M. Towner ◽  
C. L. Brogan ◽  
T. R. Hunter ◽  
C. J. Cyganowski

Abstract We have observed a sample of nine Extended Green Objects (EGOs) at 1.3 and 5 cm with the Very Large Array (VLA) with subarcsecond resolution and ∼7–14 μJy beam−1-sensitivities in order to characterize centimeter continuum emission as it first appears in these massive protoclusters. We find an EGO-associated continu um emission—within 1″ of the extended 4.5 μm emission—in every field, which is typically faint (order 101–102 μJy) and compact (unresolved at 0″.3–0″.5). The derived spectral indices of our 36 total detections are consistent with a wide array of physical processes, including both non-thermal (19% of detections) and thermal free–free processes (e.g., ionized jets and compact H ii regions, 78% of sample) and warm dust (1 source). We also find an EGO-associated 6.7 GHz CH3OH and 22 GHz H2O maser emission in 100% of the sample and a NH3 (3,3) masers in ∼45%; we do not detect any NH3 (6,6) masers at ∼5.6 mJy beam−1 sensitivity. We find statistically-significant correlations between L radio and L bol at two physical scales and three frequencies, consistent with thermal emission from ionized jets, but no correlation between L H 2 O and L radio for our sample. From these data, we conclude that EGOs likely host multiple different centimeter continuum-producing processes simultaneously. Additionally, at our ∼1000 au resolution, we find that all EGOs except G18.89−0.47 contain 1 ∼ 2 massive sources based on the presence of CH3OH maser groups, which is consistent with our previous work suggesting that these are typical massive protoclusters, in which only one to a few of the young stellar objects are massive.


2013 ◽  
Vol 9 (S303) ◽  
pp. 129-131
Author(s):  
Halca Nagoshi ◽  
Kenta Fujisawa ◽  
Yuzo Kubose

AbstractRadio continuum (cont) and radio recombination line (RRL) observations with the Yamaguchi 32-m radio telescope toward the lower part of the Galactic center lobe (GCL) in the Galactic center region are presented. While two ridges of the GCL were seen in both continuum and RRL images, the spatial coverage of the ridges of the continuum and RRL is not coincident. We distinguish the continuum emission of the GCL into thermal and non-thermal emission by assuming an electron temperature of the ionized gas of 4370 K, estimated based on the line width (14.1 km s−1). The thermal emission was found to be located inside and surrounded by the non-thermal emission.


2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2020 ◽  
Vol 501 (1) ◽  
pp. 1453-1462
Author(s):  
A S Parikh ◽  
N Degenaar ◽  
J V Hernández Santisteban ◽  
R Wijnands ◽  
I Psaradaki ◽  
...  

ABSTRACT The accretion behaviour in low-mass X-ray binaries (LMXBs) at low luminosities, especially at <1034 erg s−1, is not well known. This is an important regime to study to obtain a complete understanding of the accretion process in LMXBs, and to determine if systems that host neutron stars with accretion-heated crusts can be used probe the physics of dense matter (which requires their quiescent thermal emission to be uncontaminated by residual accretion). Here, we examine ultraviolet (UV) and X-ray data obtained when EXO 0748–676, a crust-cooling source, was in quiescence. Our Hubble Space Telescope spectroscopy observations do not detect the far-UV continuum emission, but do reveal one strong emission line, C iv. The line is relatively broad (≳3500 km s−1), which could indicate that it results from an outflow such as a pulsar wind. By studying several epochs of X-ray and near-UV data obtained with XMM–Newton, we find no clear indication that the emission in the two wavebands is connected. Moreover, the luminosity ratio of LX/LUV ≳ 100 is much higher than that observed from neutron star LMXBs that exhibit low-level accretion in quiescence. Taken together, this suggests that the UV and X-ray emission of EXO 0748–676 may have different origins, and that thermal emission from crust-cooling of the neutron star, rather than ongoing low-level accretion, may be dominating the observed quiescent X-ray flux evolution of this LMXB.


1992 ◽  
Vol 45 (4) ◽  
pp. 451
Author(s):  
RPA Bettens

A rich chemistry exists within dark clouds. In the most chemically studied dark cloud, Taurus molecular cloud one (TMC-l), more than 40 molecules have been detected. In this paper I look at the current isochoric, i.e. constant density, isothermal time-dependent gas-phase chemical models of dark clouds such as TMC-l and very briefly outline the present understanding of the chemistry of these objects. The above chemical models agree very well with the observed abundances of almost all chemical species at times earlier than steady state, i.e. earlier than thirty million years. However, the models are fraught with uncertainty and are not physically realistic representations of the full dynamical evolution of dark clouds from a more diffuse state. Nevertheless the agreement with observation is striking.


1958 ◽  
Vol 5 ◽  
pp. 37-43
Author(s):  
R. Hanbury Brown

At wave-lengths greater than about one metre the majority of the radio emission which is observed from the Galaxy cannot be explained in terms of thermal emission from ionized interstellar gas. This conclusion is widely accepted and is based on observations of the equivalent temperature of the sky and the spectrum of the radiation. The spectrum at metre wave-lengths is of the general form: where TA is the equivalent black-body temperature of a region of sky and A is the wave-length. The exponent n varies with direction but lies between about 2·5 and 2·8, and is thus significantly greater than the value of 2·0 which is the maximum to be expected for thermal emission from an ionized gas. Furthermore the value of TA is about 1050 K at 15 m and thus greatly exceeds the electron temperature expected in H 11 regions.At centimetre wave-lengths it is likely that the majority of the radiation observed originates in thermal emission from ionized gas; however, the present discussion is limited to a range of wave-lengths from about 1 m to 10 m where the ionized gas in the Galaxy is believed to be substantially transparent and where the origin of most of the radiation is believed to be non-thermal.


Sign in / Sign up

Export Citation Format

Share Document