scholarly journals Seismic waves in the asteroid environment

2021 ◽  
Vol 249 ◽  
pp. 13001
Author(s):  
Paul Sánchez ◽  
Daniel J. Scheeres

Through numerical simulations, we investigate impact generated seismic wave transmission in granular media under extremely low pressure. This mimics the conditions in the interior of asteroids and other small planetary bodies. We find a dependency not only on the overburden pressure on the medium, but also on the velocity of the impact that generates the wave. This is, at extremely low values of overburden pressure, the wave speed depends no only on the imposed pressure, but also on the increment in pressure created by the passing of the wave. We study crystalline and random packings and find very similar behaviour though with different wave speeds as expected. We then relate our results to different mission-related events on asteroids.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6801
Author(s):  
Krzysztof Fuławka ◽  
Witold Pytel ◽  
Bogumiła Pałac-Walko

The impact of seismicity on structures is one of the key problems of civil engineering. According to recent knowledge, the reliable analysis should be based on both rotational and translational components of the seismic wave. To determine the six degrees of freedom (6-DoF) characteristic of mining-induced seismicity, two sets of seismic posts were installed in the Lower Silesian Copper Basin, Poland. Long-term continuous 6-DoF measurements were conducted with the use of the R-1 rotational seismometer and EP-300 translational seismometer. In result data collection, the waveforms generated by 39 high-energy seismic events were recorded. The characteristic of the rotational component of the seismic waves were described in terms of their amplitude and frequency characteristics and were compared with translational measurements. The analysis indicated that the characteristic of the rotational component of the seismic wave differs significantly in comparison to translational ones, both in terms of their amplitude and frequency distribution. Also, attenuation of rotational and translational components was qualitatively compared. Finally, the empirical formulas for seismic rotation prediction in the Lower Silesian Copper Basin were developed and validated.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Honggang Wu ◽  
Zhixin Wu ◽  
Hao Lei ◽  
Tianwen Lai

To clarify the feasibility of BFRP (basalt fiber reinforced plastics) anchors instead of steel anchors in the seismic application of slopes under different vibration strengths, a series of shaking table tests were carried out to strengthen the slope using BFRP anchors and steel anchors, respectively. By studying the dynamic response recorded in the slope model and the observed experimental phenomena, the acceleration dynamic response and displacement spectrum dynamic response of the two slope models were analyzed. The test results show that the deformation stage of the slope reinforced by the two types of anchors is basically the same during the test, that is, elastic, plastic (potential sliding surface and plastic strengthening), and failure stages, respectively. The slope is in the elastic stage before the 0.2 g seismic wave, and it gradually enters the plastic stage after the 0.4 g seismic wave. However, the peak acceleration and displacement of the slope reinforced by steel anchors are greater than those of the slope reinforced by BFRP anchors under the same working conditions of seismic waves. In addition, we found that the acceleration response spectrum distribution curve of each measuring point in the short period has an obvious amplification effect along the elevation, and its predominant period has a forward migration phenomenon with the increase of the height of the measuring point, which also indicates that the higher frequency seismic wave has a greater impact on the top of the slope. The BFRP anchors, as a kind of flexible structure supporting slope, can effectively reduce the impact of seismic waves on the slope and attenuate seismic waves to a certain extent compared with steel anchors. Furthermore, the BFRP anchors can be deformed in coordination with the slope, which can improve the overall working performance of the slope, especially limit the dynamic response of the middle and lower slopes. These results can provide a theoretical guide for the seismic design of BFRP anchors for high slopes.


2019 ◽  
Author(s):  
Yury Alkhimenkov ◽  
Eva Caspari ◽  
Simon Lissa ◽  
Beatriz Quintal

Abstract. Understanding the properties of cracked rocks is of great importance in scenarios involving CO2 geological sequestration, nuclear waste disposal, geothermal energy, and hydrocarbon exploration and production. Developing non-invasive detecting and monitoring methods for such geological formations is crucial. Many studies show that seismic waves exhibit strong dispersion and attenuation across a broad frequency range due to fluid flow at the pore scale known as squirt flow. Nevertheless, how and to what extent squirt flow affects seismic waves is still a matter of investigation. To fully understand its angle- and frequency-dependent behavior for specific geometries appropriate numerical simulations are needed. We perform a three-dimensional numerical study of the fluid-solid deformation at the pore scale based on coupled Lame-Navier and Navier-Stokes linear quasistatic equations. We show that seismic wave velocities exhibit strong azimuth-, angle- and frequency-dependent behavior due to squirt flow between interconnected cracks. We show that the overall anisotropy of a medium mainly increases due to squirt flow but in some specific planes the anisotropy can locally decrease. We analyze the Thomsen-type anisotropic parameters and adopt another scalar parameter which can be used to measure the anisotropy strength of a model with any elastic symmetry. This work significantly clarifies the impact of squirt flow on seismic wave anisotropy in three dimensions and can potentially be used to improve the geophysical monitoring and surveying of fluid-filled cracked porous zones in the subsurface.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. D561-D571 ◽  
Author(s):  
Ratnanabha Sain ◽  
Tapan Mukerji ◽  
Gary Mavko

We emphasize the existence of stress-dependent microscopic heterogeneities in granular media and their influence on macroscopic property estimation using numerical simulations. Although numerical simulations based on contact mechanics successfully reproduce experimental stress-dependent acoustic response of granular media, most contact-mechanics-based effective medium theories (EMTs) fail. We have determined that the main reason for this discrepancy is an inadequate theoretical treatment of micro-heterogeneities in structure, force, and stress. Under infinitesimal perturbations used for estimating elastic moduli, microheterogeneities lead to displacements or relaxations — typically ignored in EMT. These infinitesimal granular relaxations are necessary to comply with detailed force balance, but do not involve grain slip and hence do not depend on friction. Furthermore, we have found that these relaxations primarily depend on the “amount” of heterogeneity, which to a first order are dependent on stress only and are independent of mineralogy. In the absence of an effective medium framework to estimate such relaxation corrections, we have provided simulation-based corrections to account for the impact of heterogeneity on elastic moduli calculations in EMT.


2007 ◽  
Vol 26 (2) ◽  
pp. 263-280 ◽  
Author(s):  
Johannes Schweitzer

The earliest seismic instruments were seismoscopes, which could only indicate that a ground shaking had occurred. Modern seismology started in the late 19th century when, mostly in Italy, Japan, Russia, and Germany, seismic instruments were developed, which were able to record ground movements as function of time and orientation. During the decade before World War I, the fundamental development of seismic instruments was completed with seismograph systems of high resolution in time and enough sensitivity to record the most important seismic phases. Since seismic waves traverse the whole Earth and do not stop at political borders, the seismological discoveries were only possible after developing new structures for internationally organized data exchange and cooperation. In parallel to instrumental and organizational developments, seismologists had to learn the principles of seismic wave propagation in a solid body based on elasticity and ray theory. A stepwise deciphering of seismic wave speeds inside the Earth for the different seismic phase types led to the discovery of the basic structure of our planet consisting of crust, mantle and a core divided in two parts.


Solid Earth ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 855-871
Author(s):  
Yury Alkhimenkov ◽  
Eva Caspari ◽  
Simon Lissa ◽  
Beatriz Quintal

Abstract. Understanding the properties of cracked rocks is of great importance in scenarios involving CO2 geological sequestration, nuclear waste disposal, geothermal energy, and hydrocarbon exploration and production. Developing noninvasive detecting and monitoring methods for such geological formations is crucial. Many studies show that seismic waves exhibit strong dispersion and attenuation across a broad frequency range due to fluid flow at the pore scale known as squirt flow. Nevertheless, how and to what extent squirt flow affects seismic waves is still a matter of investigation. To fully understand its angle- and frequency-dependent behavior for specific geometries, appropriate numerical simulations are needed. We perform a three-dimensional numerical study of the fluid–solid deformation at the pore scale based on coupled Lamé–Navier and Navier–Stokes linear quasistatic equations. We show that seismic wave velocities exhibit strong azimuth-, angle- and frequency-dependent behavior due to squirt flow between interconnected cracks. Furthermore, the overall anisotropy of a medium mainly increases due to squirt flow, but in some specific planes the anisotropy can locally decrease. We analyze the Thomsen-type anisotropic parameters and adopt another scalar parameter which can be used to measure the anisotropy strength of a model with any elastic symmetry. This work significantly clarifies the impact of squirt flow on seismic wave anisotropy in three dimensions and can potentially be used to improve the geophysical monitoring and surveying of fluid-filled cracked porous zones in the subsurface.


Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


2021 ◽  
Vol 54 (7) ◽  
pp. 1-35
Author(s):  
Salonik Resch ◽  
Ulya R. Karpuzcu

Benchmarking is how the performance of a computing system is determined. Surprisingly, even for classical computers this is not a straightforward process. One must choose the appropriate benchmark and metrics to extract meaningful results. Different benchmarks test the system in different ways, and each individual metric may or may not be of interest. Choosing the appropriate approach is tricky. The situation is even more open ended for quantum computers, where there is a wider range of hardware, fewer established guidelines, and additional complicating factors. Notably, quantum noise significantly impacts performance and is difficult to model accurately. Here, we discuss benchmarking of quantum computers from a computer architecture perspective and provide numerical simulations highlighting challenges that suggest caution.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


Sign in / Sign up

Export Citation Format

Share Document