scholarly journals Simultaneous Full-Field Strain and Temperature Measurements in Tensile Hopkinson Bar Experiments at Extreme Temperatures

2021 ◽  
Vol 250 ◽  
pp. 01015
Author(s):  
Guilherme C. Soares ◽  
Mikko Hokka

Simultaneous full-field strain and temperature measurements were used to monitor tension Split Hopkinson Pressure Bar (SHPB) tests at elevated temperatures. A direct heating system was used to increase the specimen temperature up to 1350 °C. Digital Image Correlation (DIC) and Infrared Thermography (IRT) were used was used to simultaneously monitor the evolution of the full-field strain and temperature of the specimen. Data acquisition was synchronized using a function generator, a camera pinhole model was used to represent both strain and temperature on the same coordinate system, and the displacement vector field from DIC was used to represent both datasets on the same reference frame. The use of fullfield techniques was essential at elevated temperatures, as necking occurred soon after yielding and the usability of the data obtained from the SHPB after the onset of necking is debatable. The method was able to follow the full-field strain and the temperature evolution under extreme conditions. Some challenges were found in the development of the method and recommendations as well as future applications are also described in this paper. This experimental approach is versatile and can be applied to different materials at similar testing conditions but also different loading modes and testing setups.

Author(s):  
R. Bhattacharya ◽  
N. C. Goulbourne

The present study is aimed at understanding the effects of thermal shock and associated microstructural features on the dynamic deformation mechanisms in Ti2AlC, a Mn+1AXn phase ternary ceramic. These materials crystallize in a Hexagonal Close Packed (HCP) structure with a c/a ratio greater than 1.67 which results in kink band formations when subjected to loading. In this work, we report the microstructural changes associated with thermal shocking of Mn+1AXn phases and its effects on deformation mechanisms, under dynamic compressive loading. The specimens are heated to temperatures of 220, 550 and 900°C, held at each temperature for 5–10 minutes, and subsequently quenched in water at 20°C to induce thermal shock. The thermal shock resistance and its effect on mechanical properties is investigated by subjecting heat treated specimens to compressive loading at high strain rates (∼1000–4500 s−1) using a Split Hopkinson Pressure Bar (SHPB). The microstructures of thermally shocked specimens are characterized by Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS) analysis to reveal the surface morphologies and characteristics. The displacements during the deformation events are captured using in situ high speed imaging, with full-field 2D Digital Image Correlation (DIC) technique. The key microscale mechanisms of deformation are studied using SEM analysis of deformed/fractured specimens.


Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


2018 ◽  
Vol 183 ◽  
pp. 02011
Author(s):  
Kenji Nakai ◽  
Tsubasa Fukushima ◽  
Takashi Yokoyama ◽  
Kazuo Arakawa

The high strain-rate compressive characteristics of a cross-ply carbon/epoxy laminated composite in the three principal material directions or fibre (1-), in-plane transverse (2-) and throughthickness (3-) directions are investigated on the conventional split Hopkinson pressure bar (SHPB) over a range of temperatures between 20 and 80 °C. A nearly 10 mm thick cross-ply carbon/epoxy composite laminate fabricated using vacuum assisted resin transfer molding (VaRTM) was tested. Cylindrical specimens with a slenderness ratio (= length/diameter) of 0.5 are used in high strain-rate tests, and those with the slenderness ratios of 1.0 and 1.5 are used in low and intermediate strain-rate tests. The uniaxial compressive stress-strain curves up to failure at quasi-static and intermediate strain rates are measured on an Instron testing machine at elevated temperatures. A pair of steel rings is attached to both ends of the cylindrical specimens to prevent premature end crushing in the 1-and 2-direction tests on the Instron testing machine. It is shown that the ultimate compressive strength (or failure stress) exhibits positive strainrate effects and negative temperature ones over a strain-rate range of 10–3 to 103/s and a temperature range of 20 to 80 °C in the three principal material directions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Diyuan Li ◽  
Feihong Gao ◽  
Zhenyu Han ◽  
Quanqi Zhu

Flaws and discontinuities play a crucial role in the failure process of rocks. To investigate the fracturing mechanism of rock with combined flaws composed of crack and hole, the digital image correlation (DIC) method is used to record and analyze the rock failure behavior. Coupled static and dynamic loads are applied on granite specimens with prefabricated flaws by a modified split Hopkinson pressure bar (SHPB) device. The dynamic mechanical properties of the granite specimens are affected by the flaw inclinations with the loading directions. With the inclination angle increasing, the combined strength and peak strain both decrease first and then increase. Full- and local-field strain evolution of the granite specimens is analyzed in a quantitative way by using DIC technique. The specimens with a flaw angle of 45° are broken relatively evenly with homogenous small particle sizes. The variation trend of fragment sizes is consistent with that of combined strength and absorption energy of the specimens.


2016 ◽  
Vol 140 ◽  
pp. 192-201 ◽  
Author(s):  
Mahoor Mehdikhani ◽  
Mohammadali Aravand ◽  
Baris Sabuncuoglu ◽  
Michaël G. Callens ◽  
Stepan V. Lomov ◽  
...  

2020 ◽  
Vol 1 (4) ◽  
pp. 174-192
Author(s):  
Nedaa Amraish ◽  
Andreas Reisinger ◽  
Dieter H. Pahr

Digital image correlation (DIC) systems have been used in many engineering fields to obtain surface full-field strain distribution. However, noise affects the accuracy and precision of the measurements due to many factors. The aim of this study was to find out how different filtering options; namely, simple mean filtering, Gaussian mean filtering and Gaussian low-pass filtering (LPF), reduce noise while maintaining the full-field information based on constant, linear and quadratic strain fields. Investigations are done in two steps. First, linear and quadratic strain fields with and without noise are simulated and projected to discrete measurement points which build up strain window sizes consisting of 6×5, 12×11, and 26×17 points. Optimal filter sizes are computed for each filter strategy, strain field type, and strain windows size, with minimal impairment of the signal information. Second, these filter sizes are used to filter full-field strain distributions of steel samples under tensile tests by using an ARAMIS DIC system to show their practical applicability. Results for the first part show that for a typical 12×11 strain window, simple mean filtering achieves an error reduction of 66–69%, Gaussian mean filtering of 72–75%, and Gaussian LPF of 66–69%. If optimized filters are used for DIC measurements on steel samples, the total strain error can be reduced from initial 240−300 μstrain to 100–150 μstrain. In conclusion, the noise-floor of DIC signals is considerable and the preferable filters were a simple mean with s*¯ = 2, a Gaussian mean with σ*¯ = 1.7, and a Gaussian LPF with D0*¯ = 2.5 in the examined cases.


2017 ◽  
Vol 28 (3) ◽  
pp. 035007 ◽  
Author(s):  
Wei Wang ◽  
Chenghai Xu ◽  
Hua Jin ◽  
Songhe Meng ◽  
Yumin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document