scholarly journals Renormalizability of center-vortex sectors in continuum Yang-Mills theory

2022 ◽  
Vol 258 ◽  
pp. 02002
Author(s):  
D. Fiorentini ◽  
D. R. Junior ◽  
L. E. Oxman ◽  
R. F. Sobreiro

Recently, a novel approach to quantize SU(N) Yang-Mills theory was proposed, where the configuration space {Aμ} is split into sectors labeled by topological defects, and then the gauge is fixed by a sector dependent condition. As the procedure is local in {Aμ}, it could be free from Gribov copies. In this work, we review the renormalizability of sectors labeled by an arbitrary number of elementary center vortices.

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
D. Fiorentini ◽  
D. R. Junior ◽  
L. E. Oxman ◽  
G. M. Simões ◽  
R. F. Sobreiro
Keyword(s):  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


2014 ◽  
Vol 89 (11) ◽  
Author(s):  
M. A. López-Osorio ◽  
E. Martínez-Pascual ◽  
H. Novales-Sánchez ◽  
J. J. Toscano

1993 ◽  
Vol 08 (31) ◽  
pp. 5575-5604 ◽  
Author(s):  
A. KOVNER ◽  
B. ROSENSTEIN

We present a picture of confinement based on representation of constituent quarks as pointlike topological defects. The topological charge carried by quarks and confined in hadrons is explicitly constructed in terms of Yang-Mills variables. In 2+1 dimensions we are able to construct a local complex scalar field V(x), in terms of which the topological charge is [Formula: see text]. The VEV of the field V in the confining phase is nonzero and the charge is the winding number corresponding to homotopy group π1(S1). Quarks carry the charge Q and therefore are topological solitons. The phase rotation of V is generated by the operator of magnetic flux. Unlike in QED, the U(1) magnetic flux is explicitly broken by the monopoles. This results in formation of a string between a quark and an antiquark. The effective Lagrangian for V is derived in models with adjoint and fundamental quarks. This topological mechanism of confinement is basically different from the one proposed by ’t Hooft in which the elementary objects are linelike domain walls. A baryon is described as a Y-shaped configuration of strings. In 3+1 dimensions the explicit expression for V, and therefore a detailed picture, is not available. However, assuming the validity of the same mechanism we point out several interesting qualitative consequences.


1991 ◽  
Vol 06 (10) ◽  
pp. 909-921 ◽  
Author(s):  
S.V. SHABANOV

Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions, this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tending to zero at spatial infinity.


2007 ◽  
Vol 22 (20) ◽  
pp. 1481-1492 ◽  
Author(s):  
SOON-TAE HONG ◽  
JOOHAN LEE ◽  
TAE HOON LEE ◽  
PHILLIAL OH

We study the supersymmetric quantum mechanics of an isospin particle in the background of spherically symmetric Yang–Mills gauge field. We show that on S2 the number of supersymmetries can be made arbitrarily large for a specific choice of the spherically symmetric SU (2) gauge field. However, the symmetry algebra containing the supercharges becomes nonlinear if the number of fermions is greater than two. We present the exact energy spectra and eigenfunctions, which can be written as the product of monopole harmonics and a certain isospin state. We also find that the supersymmetry is spontaneously broken if the number of supersymmetries is even.


Sign in / Sign up

Export Citation Format

Share Document