scholarly journals The forming and emission of high power electromagnetic pulses

2018 ◽  
Vol 19 ◽  
pp. 01001 ◽  
Author(s):  
Kazimierz Jakubiuk ◽  
Daniel Kowalak ◽  
Mikołaj Nowak

An impulse energy source, a power conditioning system and an electromagnetic field emitter are essential to generate an electromagnetic field pulse (EMFP) with a specific frequency bandwidth. Selected simulation results for a power conditioning system consisting of a fuse opening switch and a paraboloidal electromagnetic emitter have been presented in this article. The synthetic system examined in the simulation is powered by an impulse capacitor instead of a flux compression generator (FCG) used in practice. The obtained results confirm that pulse generation and emission of high-power EMFP is possible.

2019 ◽  
Vol 28 ◽  
pp. 01001
Author(s):  
Mikołaj Nowak ◽  
Kazimierz Jakubiuk ◽  
Daniel Kowalak ◽  
Mirosław Wołoszyn

In the literature, the emission properties of the electromagnetic field pulse systems based on high voltage antennas (HVR) have been widely described. In order to increase the emission efficiency by extending duration and increasing amplitude of the impulse it is possible to use a resonance system tuned to the parameters of the signal shaped in the pulse forming circuit. The synthesis of a time-domain simulation model of a complex electromagnetic pulses emission system and its verification by experimental research has been presented in this paper.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 99
Author(s):  
Mikołaj Nowak ◽  
Kazimierz Jakubiuk ◽  
Daniel Kowalak ◽  
Marek Pikoń ◽  
Józef Czucha ◽  
...  

This paper presents comprehensive analytical, numerical and experimental research of the compact and integrated high-power pulse generation and forming system based on the flux compression generator and the electro-explosive forming fuse. The paper includes the analysis of the presented solution, starting from the individual components studies, i.e., the separate flux compression generator tests in field conditions and the forming fuse laboratory test, through the formulation of the extended quasi-empirical components models aimed at enabling their optimal parameters determination at the early design stage and ending with the description of the integrated system studies in field conditions. Based on detailed research, it was possible to achieve very high parameters of the generated pulses, i.e., overvoltages of up to 340 kV with the available source power reaching 25 GW. A very high convergence of the simulation and the results of experimental research has been obtained. The parameters of the presented system have been compared with other literature solutions and the selected topology of the high power pulse generation and forming system has been distinguished against other available ones, e.g., based on Marx generators and forming lines.


2019 ◽  
Author(s):  
Wim Vegt

In generally electromagnetic pulses propagate like spherical waves in every direction with the same universal constant, the speed of light. But photons propagate in a very different way. Photons propagate like particles in one single direction. The fundamental question is where does exist the boundary between “electromagnetic pulses” and “photons”. Photons are being well described in “Photonics” which is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the “Theory of General Relativity” with the publication ”Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well known law in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


2021 ◽  
Vol 11 (11) ◽  
pp. 4856
Author(s):  
Hae-Sol Lee ◽  
Myeong-Hwan Hwang ◽  
Hyun-Rok Cha

As unmanned aerial vehicles expand their utilization and coverage, research is in progress to develop low-weight and high-performance motors to efficiently carry out various missions. An electromagnetic field interior permanent magnet (IPM) motor was designed and analyzed in this study that improved the flight performance and flight duration of an unmanned aerial vehicle (UAV). The output power and efficiency of a conventional commercial UAV motor were improved by designing an IPM motor of the same size, providing high power output and high-speed operation by securing high power density, wide speed range, and mechanical stiffness. The cooling performance and efficiency of the drive motor were improved without requiring a separate power source for cooling by introducing the helical-grooved self-cooling case, which has a low heat generation structure. Furthermore, the motor is oil-cooled through rotating power without a separate power source, reducing the weight of the UAV. The heat dissipation characteristics were verified by fabricating a prototype and taking actual measurements to verify the validity of the heat dissipation characteristics. The results of this study are expected to improve the flight duration and performance of UAVs and contribute to the efficiency of the design of a UAV drive motor.


2016 ◽  
Vol 11 (06) ◽  
pp. C06004-C06004 ◽  
Author(s):  
M. De Marco ◽  
J. Krása ◽  
J. Cikhardt ◽  
M. Pfeifer ◽  
E. Krouský ◽  
...  

2012 ◽  
Author(s):  
Alexandre Laurain ◽  
Maik Scheller ◽  
Tsuei-Lian Wang ◽  
Jorg Hader ◽  
Jerome V. Moloney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document