ELECTRON DIFFRACTION AND MICROSCOPY OF INCOMMENSURATE PHASES AND QUASI-CRYSTALS

1986 ◽  
Vol 47 (C3) ◽  
pp. C3-437-C3-446 ◽  
Author(s):  
J. W. STEEDS ◽  
R. AYER ◽  
Y. P. LIN ◽  
R. VINCENT
Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.


1988 ◽  
Vol 24 (4) ◽  
pp. 440-441
Author(s):  
S. Last ◽  
P.M. Bronsveld ◽  
G. Boom ◽  
J.Th.M. de Hosson

1988 ◽  
Vol 99 (1-2) ◽  
pp. 335-337 ◽  
Author(s):  
S. Last ◽  
P.M. Bronsveld ◽  
G. Boom ◽  
J.Th.M. de Hosson

Author(s):  
S.W. Hui ◽  
D.F. Parsons

The development of the hydration stages for electron microscopes has opened up the application of electron diffraction in the study of biological membranes. Membrane specimen can now be observed without the artifacts introduced during drying, fixation and staining. The advantages of the electron diffraction technique, such as the abilities to observe small areas and thin specimens, to image and to screen impurities, to vary the camera length, and to reduce data collection time are fully utilized. Here we report our pioneering work in this area.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson ◽  
C. W. Walker

Selected area electron diffraction (SAD) has been used successfully to determine crystal structures, identify traces of minerals in rocks, and characterize the phases formed during thermal treatment of micron-sized particles. There is an increased interest in the method because it has the potential capability of identifying micron-sized pollutants in air and water samples. This paper is a short review of the theory behind SAD and a discussion of the sample preparation employed for the analysis of multiple component environmental samples.


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Sign in / Sign up

Export Citation Format

Share Document