scholarly journals Discrete transparent boundary conditions for the two-dimensional leap-frog scheme

Author(s):  
Christophe Besse ◽  
Jean-Francois Coulombel ◽  
Pascal Noble

We develop a general strategy in order to implement approximate discrete transparent boundary conditions for finite difference approximations of the two-dimensional transport equation. The computational domain is a rectangle equipped with a Cartesian grid. For the two-dimensional leap-frog scheme, we explain why our strategy provides with explicit numerical boundary conditions on the four sides of the rectangle and why it does not require prescribing any condition at the four corners of the computational domain. The stability of the numerical boundary condition on each side of the rectangle is analyzed by means of the so-called normal mode analysis. Numerical investigations for the full problem on the rectangle show that strong instabilities may occur when coupling stable strategies on each side of the rectangle. Other coupling strategies yield promising results.

1973 ◽  
Vol 9 (2) ◽  
pp. 235-247 ◽  
Author(s):  
H. W. Bloomberg ◽  
H. L. Berk

The problem of the stability of inhomogeneous, electrostatic, multiple water-bag plasmas is considered. Equations are derived for general stationary water-bag equilibria, as well as for the corresponding perturbations. Particular attention is directed to systems with trapped particles in periodic equilibria, and special boundary conditions for the perturbation equations at the trapped-particle turning points are introduced. A normal-mode analysis is carried out for a configuration involving trapped particles occupying a finite region in the vicinity of the trough of an equilibrium wave (BGK mode). The results confirm the validity of the bunched-beam approximation.


2013 ◽  
Vol 18 (1) ◽  
pp. 99-112 ◽  
Author(s):  
P. Kumar ◽  
H. Mohan

Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


1968 ◽  
Vol 8 (03) ◽  
pp. 293-303 ◽  
Author(s):  
H.S. Price ◽  
J.C. Cavendish ◽  
R.S. Varga

Abstract A numerical formulation of high order accuracy, based on variational methods, is proposed for the solution of multidimensional diffusion-convection-type equations. Accurate solutions are obtained without the difficulties that standard finite difference approximations present. In addition, tests show that accurate solutions of a one-dimensional problem can be obtained in the neighborhood of a sharp front without the need for a large number of calculations for the entire region of interest. Results using these variational methods are compared with several standard finite difference approximations and with a technique based on the method of characteristics. The variational methods are shown to yield higher accuracies in less computer time. Finally, it is indicated how one can use these attractive features of the variational methods for solving miscible displacement problems in two dimensions. Introduction The problem of finding suitable numerical approximations for equations describing the transport of heat or mass by diffusion and convection simultaneously has been of interest for some time. Equations of this type, which will be called diffusion-convection equations, arise in describing many diverse physical processes. Of particular interest here is the equation describing the process by which one miscible liquid displaces another liquid in a one-dimensional porous medium. The behavior of such a system is described by the following parabolic partial differential equation: (1) where the diffusivity is taken to be unity and c(x, t) represents a normalized concentration, i.e., c(x, t) satisfied 0 less than c(x, t) less than 1. Typical boundary conditions are given by ....................(2) Our interest in this apparently simple problem arises because accurate numerical approximations to this equation with the boundary conditions of Eq. 2 are as theoretically difficult to obtain as are accurate solutions for the general equations describing the behavior of two-dimensional miscible displacement. This is because the numerical solution for this simplified problem exhibits the two most important numerical difficulties associated with the more general problem: oscillations and undue numerical dispersion. Therefore, any solution technique that successfully solves Eq. 1, with boundary conditions of Eq. 2, would be excellent for calculating two-dimensional miscible displacement. Many authors have presented numerical methods for solving the simple diffusion-convection problem described by Eqs. 1 and 2. Peaceman and Rachford applied standard finite difference methods developed for transient heat flow problems. They observed approximate concentrations that oscillated about unity and attempted to eliminate these oscillations by "transfer of overshoot". SPEJ P. 293ˆ


2017 ◽  
Vol 22 (1) ◽  
pp. 5-23 ◽  
Author(s):  
P. Ailawalia ◽  
S.K. Sachdeva ◽  
D. Pathania

AbstractThe purpose of this paper is to study the two dimensional deformation in a thermoelastic micropolar solid with cubic symmetry. A mechanical force is applied along the interface of a thermoelastic micropolar solid with cubic symmetry (Medium I) and a thermoelastic solid with microtemperatures (Medium II). The normal mode analysis has been applied to obtain the exact expressions for components of normal displacement, temperature distribution, normal force stress and tangential coupled stress for a thermoelastic micropolar solid with cubic symmetry. The effects of anisotropy, micropolarity and thermoelasticity on the above components have been depicted graphically.


2017 ◽  
Vol 865 ◽  
pp. 233-238
Author(s):  
Quan Zheng ◽  
Yu Feng Liu

Burgers’ equation on an unbounded domain is an important mathematical model to treat with some external problems of fluid materials. In this paper, we study a FDM of Burgers’ equation using high-order artificial boundary conditions on the unbounded domain. First, the original problem is converted into the heat equation on an unbounded domain by Hopf-Cole transformation. Thus the difficulty of nonlinearity of Burgers’ equation is overcome. Second, high-order artificial boundary conditions are given by using Padé approximation and Laplace transformation. And the conditions confine the heat equation onto a bounded computational domain. Third, we prove the solutions of the resulting heat equation and Burgers’ equation are both stable. Fourth, we establish the FDM for Burgers’ equation on the bounded computational domain. Finally, a numerical example demonstrates the stability, the effectiveness and the second-order convergence of the proposed method.


2013 ◽  
Vol 13 (2) ◽  
pp. 386-410 ◽  
Author(s):  
Björn Sjögreen ◽  
Jeffrey W. Banks

AbstractWe consider multi-physics computations where the Navier-Stokes equations of compressible fluid flow on some parts of the computational domain are coupled to the equations of elasticity on other parts of the computational domain. The different subdomains are separated by well-defined interfaces. We consider time accurate computations resolving all time scales. For such computations, explicit time stepping is very efficient. We address the issue of discrete interface conditions between the two domains of different physics that do not lead to instability, or to a significant reduction of the stable time step size. Finding such interface conditions is non-trivial.We discretize the problem with high order centered difference approximations with summation by parts boundary closure. We derive L2 stable interface conditions for the linearized one dimensional discretized problem. Furthermore, we generalize the interface conditions to the full non-linear equations and numerically demonstrate their stable and accurate performance on a simple model problem. The energy stable interface conditions derived here through symmetrization of the equations contain the interface conditions derived through normal mode analysis by Banks and Sjögreen in [8] as a special case.


2000 ◽  
Vol 420 ◽  
pp. 301-324 ◽  
Author(s):  
X. Y. LUO ◽  
T. J. PEDLEY

Steady and unsteady numerical simulations of two-dimensional flow in a collapsible channel were carried out to study the flow limitation which typically occurs when the upstream transmural pressure is held constant while flow rate and pressure gradient along the collapsible channel can vary independently. Multiple steady solutions are found for a range of upstream transmural pressures and Reynolds number using an arclength control method. The stability of these steady solutions is tested in order to check the correlation between flow limitation and self-excited oscillations (the latter being a consequence of unstable steady solutions). Both stable and unstable solutions are found when flow is limited. Self-excited oscillations and divergence instabilities are observed in certain solution branches. The instability of the steady solutions seems to depend on the unsteady boundary conditions used, i.e. on which parameters are allowed to vary. However, steady solutions associated with the solution branch before flow limitation where the membrane wall bulges are found to be stable for each of the three different boundary conditions employed. We conclude that there is no one to one correlation between the two phenomena in this two dimensional channel model.


Author(s):  
Jaume Terradas ◽  
Ramón Oliver ◽  
José Luis Ballester

The excitation and damping of transversal coronal loop oscillations is studied using one-and two-dimensional models of line-tied cylindrical loops. By solving the time-dependent magnetohydrodynamic equations it is shown how an initial disturbance generated in the solar corona induces kink mode oscillations. We investigate the effect of the disturbance on a loop with a non-uniform boundary layer. In particular, a strong damping of transversal oscillations due to resonant absorption is found, such as predicted by previous works based on normal mode analysis.


Sign in / Sign up

Export Citation Format

Share Document