scholarly journals Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

2014 ◽  
Vol 13 ◽  
pp. 04022
Author(s):  
A. Triwiyanto ◽  
A. Zainuddin ◽  
K.A.Z Abidin ◽  
M.A Billah ◽  
P. Hussain
2011 ◽  
Vol 690 ◽  
pp. 91-94 ◽  
Author(s):  
Anke Dalke ◽  
Anja Buchwalder ◽  
Heinz Joachim Spies ◽  
Horst Biermann ◽  
Rolf Zenker

Within the last years, considerable progress was achieved in the research field of plasma nitriding of Al alloys. However, due to large property differences between the very hard AlN layer and the soft Al matrix material the load capacity of the nitride layer is limited. Electron beam (EB) surface alloying modifies the chemical composition of the area near the surface up to a certain depth. This, for instance, results in high hardness levels, and therefore this layer acts as support for the hard and wear-resistant thin AlN layer generated by plasma nitriding. In the present study, surface modifications produced by a combination of EB alloying with Fe based additives and plasma nitriding of wrought, cast and spray-formed Al alloys were investigated. After the EB treatment the layers were examined regarding their influence on the structure, the nitride layer growth mechanism, the effect of the EB layer for the support of the AlN layer and the resulting duplex layer properties, e.g. hardness and wear behaviour.


2019 ◽  
Vol 26 (05) ◽  
pp. 1850188 ◽  
Author(s):  
FATIH KAHRAMAN ◽  
GÖKÇE MEHMET GENÇER ◽  
AYÇA D. KAHRAMAN ◽  
COŞKUN YOLCU ◽  
HAYDAR KAHRAMAN

The effects of compressive cold deformation under the quasi-static loads on the nitride formation, nitride layer growth and surface hardness properties were researched in this study. Martensite structure did not form in AISI 316Ti stainless steel as a result of quasi-static deformation. Diffusion layer did not form in all nitrided samples. Both the deformed and undeformed samples have only compound layer on the surfaces at the low-temperature nitriding conditions (400∘C, 7[Formula: see text]h). According to the X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS) and electron probe microanalysis (EPMA) results, S-phase and chromium nitride (CrN) were formed in the compound layers of the deformed samples. However, CrN did not form in the compound layer of the undeformed sample. The optical microscope (OM) results showed that the compressive cold deformation increased the nitrogen diffusion rate and led to thicker nitrided layer than the undeformed sample under the same plasma-nitriding conditions. All nitrided layers presented higher microhardness values ([Formula: see text][Formula: see text]HV) when compared with the untreated sample hardness. It was also verified that the deformation amount did not affect significantly the nitrided layer hardness.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 456 ◽  
Author(s):  
Shinichiro Adachi ◽  
Nobuhiro Ueda

Cold-sprayed AISI 316L stainless steel coatings are treated to form an austenite phase with excessive dissolved nitrogen (known as the S-phase) by plasma nitriding at temperatures below 450 °C. The S-phase is a hard and wear-resistant layer with high corrosion resistance. However, the S-phase layer formed after only nitriding is thin and the hardness abruptly decreases at a certain depth; it lacks mechanical reliability. We examined two types of combined low-temperature plasma treatment to enhance the mechanical reliability of the S-phase layer: (i) sequential and (ii) simultaneous. In the sequential plasma treatment, the carburizing step was followed by nitriding. In the simultaneous treatment, the nitriding and carburizing steps were conducted at the same time. Both combined plasma treatments succeeded in thickening the S-phase layers and changed the hardness depth profiles to decrease smoothly. In addition, anodic polarization measurements indicated that sequential treatment involving carburizing followed by nitriding for 2 h each resulted in high corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document