scholarly journals Ageing management in NPP. Effectiveness of the methods for control, examination and monitoring in relation to mechanisms of degradation of mechanical properties

2018 ◽  
Vol 145 ◽  
pp. 05015
Author(s):  
Galya Dimova

This paper describes ageing management activities for Long Term Operation (LTO) of components of Kozloduy NPP EAD. The stages of LTO Project are: Stage 1 - implementing a comprehensive assessment of the actual condition of the equipment; Stage 2 - providing of a Complex Analysis; Stage 3 – licensing of Plant Life Extension (PLEX) for long-term operation (LTO). The main activities are assessment of actual condition of the equipment and building; review of methods for control (non-destructive), examination and monitoring; assessment of effectiveness of methods; necessity of additional control/ examination/ service. The paper describes some mechanisms of degradation of mechanical properties, methods for control and criterions for their effectiveness.

Author(s):  
Oliver Martin ◽  
Antonio Ballesteros ◽  
Christiane Bruynooghe ◽  
Michel Bie`th

The energy supply of the future in the EU will be a mix of renewable, fossil and nuclear. There are 145 nuclear power reactors in operation in 15 out of the 27 EU countries, with installed power ∼132 GWe. The age distribution of current nuclear power plants in EU is such that in 2010 most of them will have passed 20-years and approximately 25% of them 30 years of age. The decrease of energy supply from nuclear generated electricity can not always be compensated in a reliable and economical way within a short time span. For this situation utilities may be keen to upgrade the reactor output and /or to ask their regulatory bodies for longer term operation. Under the research financed in the Euratom part of the Research Directorate (RTD) of the European Commission several projects explicitly address the safe long term operation of nuclear power plants (NULIFE, LONGLIFE) and the topics proposed in the 2010 call explicitly address issues concerning component ageing, in particular non metallic components, i.e. instrumentation and cables (I&C) and concrete ageing. This paper presents an overview of the plans for long term operation (LTO) of nuclear power plants in the EU. Special emphasis is given on research activities on component ageing management and long term operation issues related to safety.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 491 ◽  
Author(s):  
Volodymyr Hutsaylyuk ◽  
Pavlo Maruschak ◽  
Ihor Konovalenko ◽  
Sergey Panin ◽  
Roman Bishchak ◽  
...  

Regularities of steel structure degradation of the “Novopskov-Aksay-Mozdok” gas main pipelines (Nevinnomysskaya CS) as well as the “Gorky-Center” pipelines (Gavrilovskaya CS) were studied. The revealed peculiarities of their degradation after long-term operation are suggested to be treated as a particular case of the damage accumulation classification (scheme) proposed by prof. H.M. Nykyforchyn. It is shown that the fracture surface consists of sections of ductile separation and localized zones of micro-spalling. The presence of the latter testifies to the hydrogen-induced embrittlement effect. However, the steels under investigation possess sufficiently high levels of the mechanical properties required for their further safe exploitation, both in terms of durability and cracking resistance.


Author(s):  
Sergey A. Ivanov ◽  
Alexander I. Rybnikov

Criteria for remaining life estimation and methods for enhancing fatigue resistance of heavy-duty gas turbine bucket metal are based on the analysis of changes in the structure and properties of metal after long-term operation. High-cycle fatigue (HCF) resistance is shown to be a decisive characteristic in the residual life estimation of turbine buckets after operation over 100,000 hours. The tests of the buckets from cast and wrought nickel-based alloys after long-term operation demonstrated decreasing of fatigue strength by up to 25%. The metal structure in operation undergoes notable deterioration mainly in phase redistribution. The size and configuration of metal phases are changing also. It caused the changes in metal properties. The decrease of the bucket fatigue strength correlates with the decrease of metal ductility. The reconditioning heat treatment resulted in restoring mechanical properties of metal. The fatigue resistance also increased nearly to the initial level. The influence of operational factors on bucket fatigue strength deterioration has been established. The mechanical damages on bucket airfoil may decrease the fatigue resistance. We found the correlation of endurance limit and damages depth. The procedures for metal properties recovering and buckets service life substantial extension have been developed. It has resulted in the extension of the buckets service life by up to 50% over the assigned life in gas turbines operated by Gazprom.


Author(s):  
Karel Matocha

The assessment of the residual lifetime of critical components of industrial plants requires the knowledge of mechanical properties prior to operation, respecting all technological operations realized throughout the manufacture of the component, and the knowledge of mechanical properties after actual time of operation (actual mechanical properties). Small Punch (SP) test technique enables measurement of the realistic material properties at the critical locations in the component both prior and after long-term operation. The paper shows the examples of the sampling of testing material from the critical components of the industrial plants and the procedures for determination of tensile and fracture characteristics by SP tests at ambient and low temperatures. The special attention is devoted to the test specimen orientation for determination of SP fracture energy ESP.


Author(s):  
Ivan Klevtsov ◽  
Andrei Dedov

Long-term operation of the power plant components in the conditions of the creep leads to the degradation of the short-term mechanical properties of the material. Therefore, in order to predict the degree of the metal degradation and integrity of the component the determination of the mechanical properties of the actual component in service material is required. Since the standard tests requiring a significant volume of sample material cannot be applied the technique of the tensile testing of miniature flat plate specimens has been developed in Tallinn University of Technology and described in this paper. The results of the tests of miniature flat plate specimens have been compared with testing results of cylindrical specimens with standard size and at the same time the comparison has shown a good agreement of the results. The data analysis has also shown the high repeatability of the tests results of miniature specimens. Thus, the developed technique of the miniature flat plate specimens testing could be considered as accurate and reliable method and could be definitely used for evaluation of the tensile properties of the metal.


2016 ◽  
Vol 16 (4) ◽  
pp. 38-44
Author(s):  
J. Łabanowski ◽  
M. Jurkowski ◽  
M. Landowski

Abstract Microstructure transformations occur in the Manaurite XM cast steel tubes during long-term operation in the reformer furnace were revealed and described. The relationship between mechanical properties, an increase of internal diameter of the tube and microstructure degradation is discussed. Static tensile test was performed on two types of samples with different shapes. It has been shown differences in the results of tests and an explanation of this phenomenon.


2020 ◽  
Vol 70 (1) ◽  
pp. 115-126
Author(s):  
Okipnyi Igor ◽  
Poberezhny Lyubomyr ◽  
Zapukhliak Vasyl ◽  
Hrytsanchuk Andrii ◽  
Poberezhna Liubov ◽  
...  

AbstractCorrosion and corrosion-fatigue tests of the material of the pipeline, which was in operation for 41 years. It has been shown that prolonged operation reduces the parameters of resistance to fatigue and prolonged static loading in corrosive environments. It was established that the degradation of physical and mechanical properties is insignificant, Ukraine’s main gas pipelines are ready to operate at full capacity provided that timely monitoring measures are carried out.


CORROSION ◽  
10.5006/3374 ◽  
2019 ◽  
Vol 76 (2) ◽  
pp. 142-175
Author(s):  
Koji Arioka

Plant life extension from the initial licensed life to beyond 60 years is now being discussed for light water cooled nuclear powered reactors (LWRs). Reliable prediction for material degradation is extremely important to keep the reliability of LWRs during such long-term operation. One of the specific perspectives for this prediction is to take into account the changes in material properties during long-term operation, such as cavity formation, even at the LWR operating temperature. The mechanism of cavity formation and the associated phenomena are closely intertwined with interdisciplinary technological and scientific knowledge. Therefore, historical key knowledge from both phenomenological and fundamental research studies related to cavity formation was first reviewed to understand the overall picture. Subsequently, current research results related to long-term stress corrosion cracking initiation in the LWR environment were summarized to explain what is known, what is still unknown, and what are the critical remaining subjects.


Sign in / Sign up

Export Citation Format

Share Document