scholarly journals Experimental Study on Friction of Hydraulic Cylinder in Different Sealing Systems

2018 ◽  
Vol 153 ◽  
pp. 06012
Author(s):  
Ke Ma ◽  
Jiawei Wang ◽  
Le Gu

The friction of the hydraulic cylinder mainly comes from the sealing part, the existence of friction leads the wear of the seal. In view of the serious impact of the damage of the seal on the hydraulic cylinder, a set of sealing test system was designed, for the purpose of investigation and analysis on the performance of different sealing kit configuration, in terms of friction with given hydraulic medium. In this paper, there will be the introduction of the principles, constitutions and functions of the testing system. The experimental results provide data support for the design and selection of sealing system of the hydraulic cylinder.

2013 ◽  
Vol 333-335 ◽  
pp. 2461-2464
Author(s):  
Bo Wang ◽  
Hai Sen Zhao ◽  
Shou Jun Lian

System accuracy is an important assessment indicator for automatic test system, which is influenced by many factors such as instrument, person, and environment. The paper takes a set of automatic motor testing system for an example, the mathematic relationship between the system accuracy and the precision of instrument transformers was analyzed, which also provides a theoretical reference for the precision selection of instrument transformer when the system accuracy was known. Some improved measures such as the selection of measuring point and the calibration of transformer ratio and phase angle are put forward. Testing results verified its simplicity and efficiency, besides the novelty above, the paper also provides a new idea to improve the system accuracy of constructed test platforms without increasing the cost for exchanging a matched transformer.


2012 ◽  
Vol 468-471 ◽  
pp. 2542-2545
Author(s):  
Xi Zhang ◽  
Ping Zhao ◽  
Yu Bai

In order to solve the problem that there is no appropriate testing method for the purchasing process of sealing washer in hydraulic support producing company at present, the author designed a test bed used to test the seal performance of hydraulic cylinder in the mine hydraulic support to provide database supports for purchasing sealing washer for hydraulic support manufacturers, by using the performance testing system of sealing washer worked upright column for hydraulic support. The introduction of the principles, constitutions and functions of the test bed will be shown in this paper. After a number of experiments, it is reflected by the practical applications that the test bed is operating stably, accurately and efficiently which could be used for testing sealing washer.


2012 ◽  
Vol 40 (2) ◽  
pp. 83-107 ◽  
Author(s):  
Zhao Li ◽  
Ziran R. Li ◽  
Yuanming M. Xia

ABSTRACT A detailed tire-rolling model (185/75R14), using the implicit to explicit FEA solving strategy, was constructed to provide a reliable, dynamic simulation with several modeling features, including mesh, material modeling, and a solving strategy that could contribute to the consideration of the serious numerical noises. High-quality hexahedral meshes of tread blocks were obtained with a combined mapping method. The actual rubber distributing and nonlinear, stress-strain relationship of the rubber and bilinear elastic reinforcement were modeled for realism. In addition, a tread-rubber friction model obtained from the Laboratory Abrasion and Skid Tester (LAT 100) was applied to simulate the interaction of the tire with the road. The force and moment (F&) behaviors of tire cornering when subjected to a slip-angle sweep of −10 to 10° were studied with that model. To demonstrate the efficiency of the proposed simulation, the computed F&M were compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering F&M agreed well with the experimental results, so the footprint shape and contact pressure distribution of several cornering conditions were investigated. Furthermore, the longitudinal forces in response to braking/driving torque application in a slip-ratio range of −100% to 100% were computed. The proposed FEA solution confines the numerical noise within a smaller range and can serve as a valid tool in tire design.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2021 ◽  
pp. 1-11
Author(s):  
Liu Narengerile ◽  
Li Di ◽  

At present, the college English testing system has become an indispensable system in many universities. However, the English test system is not highly humanized due to problems such as unreasonable framework structure. This paper combines data mining technology to build a college English test framework. The college English test system software based on data mining mainly realizes the computer program to automatically generate test papers, set the test time to automatically judge the test takers’ test results, and give out results on the spot. The test takers log in to complete the test through the test system software. The examination system software solves the functions of printing test papers, arranging invigilation classrooms, invigilating teachers, invigilating process, collecting test papers, scoring and analyzing test papers in traditional examinations. Finally, this paper analyzes the performance of this paper through experimental research. The research results show that the system constructed in this paper has certain practical effects.


2019 ◽  
Vol 55 (11) ◽  
Author(s):  
C. S. Akondi ◽  
K. Bantawa ◽  
D. M. Manley ◽  
S. Abt ◽  
P. Achenbach ◽  
...  

Abstract.This work measured $ \mathrm{d}\sigma/\mathrm{d}\Omega$dσ/dΩ for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $ \gamma p\rightarrow K^0\Sigma^+$γp→K0Σ+, $ \gamma n\rightarrow K^0\Lambda$γn→K0Λ, and $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 reactions. Our results for $ \gamma n\rightarrow K^0 \Sigma^0$γn→K0Σ0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $ N^{\ast}$N* resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $ \pi N$πN channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 588
Author(s):  
Benjamin C. Smith ◽  
Brett C. Ramirez ◽  
Steven J. Hoff

Many climate-controlled agricultural buildings use direct gas-fired circulating heaters (DGFCH) for supplement heat. There is no standardized test to calculate thermal efficiency for these heaters. This study aimed to develop a measurement system and analytical analysis for thermal efficiency, quantify the measurement uncertainty, and assess economics of DGFCH efficiency. The measurement system developed was similar to the ASHRAE 103 standard test stand with adaptations to connect the apparatus to the DGFCH. Two different propane measurement systems were used: input ratings < 30 kW used a mass flow system and input ratings > 30 kW used a volumetric gas meter. Three DGFCHs (21.9, 29.3, 73.3 kW) were tested to evaluate the system. Thermal efficiencies ranged from 92.4% to 100.9%. The resulting uncertainty (coverage factor of 2; ~95% Confidence Interval) ranged from 13.1% to 30.7% for input ratings of 56.3 to 11.4 kW. Key sources of uncertainty were propane and mass flow of air measurement. The economic impact of 1% difference in thermal efficiency ranged from USD $61.3 to $72.0 per heating season. Refinement of the testing system and procedures are needed to reduce the uncertainty. The application of this system will aid building designers in selection of DGFCHs for various applications.


2020 ◽  
Vol 29 (1) ◽  
pp. 195-202
Author(s):  
Tran Anh Dung ◽  
Mai Van Tham ◽  
Do Xuan Quy ◽  
Tran The Truyen ◽  
Pham Van Ky ◽  
...  

AbstractThis paper presents simulation calculations and experimental measurements to determine the dynamic load factor (DLF) of train on the urban railway in Vietnam. Simulation calculations are performed by SIMPACK software. Dynamic measurement experiments were conducted on Cat Linh – Ha Dong line. The simulation and experimental results provide the DLF values with the largest difference of 2.46% when the train speed varies from 0 km/h to 80 km/h


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


2011 ◽  
Vol 415-417 ◽  
pp. 1703-1707
Author(s):  
Jun Min Chen ◽  
Xiao Lin Yao

Abstract. In order to investigate the optimal thickness of infiltration media in the Constructed Rapid Infiltration System, the artificial soil column is used to simulate the Constructed Rapid Infiltration System, and the CODCr, NH3-N and TN concentrations of the effluent from all the sampling sites are monitored. The experimental results and analysis show that the thickness of infiltration media exerts a significant influence on the CODCr, NH3-N and TN concentration and removal efficiency of the effluent; the CODCr, NH3-N and TN are mainly removed in the 0-1800mm zone of the artificial soil column; the total CODCr removal efficiency increases, as the thickness of infiltration media increases, but the CODCr removal efficiency in the 1800-2200mm zone is very low; the NH3-N and TN removal efficiency reaches the maximum where the thickness of infiltration media is 1800mm; the NH3-N and TN concentration of the effluent from 1800-2200mm zone dose not decrease, but increase 5-8%, due to the assimilation denitrification and amemoniation reaction on the end of the anaerobic zone; in consideration of the effluent quality, efficient biodegradation zone, construction investment, etc. the optimal thickness of infiltration media in CRI system should be 1800mm.


Sign in / Sign up

Export Citation Format

Share Document