scholarly journals Enzymatic hydrolysis of bitter cassava and Gadung starches with different compositions at low temperature

2018 ◽  
Vol 156 ◽  
pp. 01009
Author(s):  
Hargono Hargono ◽  
Andri Cahyo Kumoro ◽  
Bakti Jos

The effect of compositions of bitter cassava (Manihot glaziovii) and gadung (Dioscorea hispida Dennst) starches on reducing sugar during hydrolysis using granular starch hydrolyzing enzyme (GSHE) was studied. All hydrolyses were conducted at concentration of substrate was 200 g.L-1, while concentration of enzyme was 1.5 % (w/w), during of hydrolysis time 24 h, at 30°C. Mass compositition of bitter cassava and gadung starches were 9:1 to 1:9 The increase gadung starch compositions will decrease the reducing sugar. The optimum condition of the process using concentration of substrate 200 g.L-1 with compositions of bitter cassava and gadung starches was 9:1 at 18 h. It was found that reducing sugar was 50.20 g.L-1. The concentration of reducing sugar mainly depend on starch content on bitter cassava, it is much bigger than the gadung starch.

2021 ◽  
Author(s):  
Dwini Normayulisa Putri ◽  
Meka Saima Perdani ◽  
Masafumi Yohda ◽  
Tania Surya Utami ◽  
Muhamad Sahlan ◽  
...  

Abstract Enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB) that has been pretreated by modified pretreatment has been investigated in this study. The OPEFB used was pretreated by using sequential peracetic acid – alkaline peroxide solution. As the modification method, the assistance of pretreatment by ultrasound was conducted, in order to increase the enzyme accessibility. Therefore, it enhances the production of reducing sugar on the hydrolysis process. Prior to hydrolysis process, OPEFB was initially treated by using peracetic acid solution, comprise of CH3COOH (> 99%) and H2O2 (30% w/w), assisted by ultrasound for 3 hours at 35oC. Afterwards, OPEFB was treated by using alkaline peroxide solution, comprise of NaOH (40% w/w) and H2O2 (35% w/w), assisted by ultrasound for 10 hours at 35oC. OPEFB that has been pretreated was then subjected to enzymatic hydrolysis process using cellulase enzyme, in order to convert cellulose content into reducing sugar. Enzymatic hydrolysis was carried out at 50oC in a shaker incubator with 150 rpm for 48 hours. In this study, the effect of different enzyme concentration and hydrolysis time towards the sugar concentration in modified-pretreated OPEFB was observed and analyzed. Three different concentrations of enzyme were used, including 1.25, 2.5, and 5 g/L, and reducing sugar concentrations were analyzed at 30 and 45 minutes, and 1, 2, 4, 6, 24, 30, and 48 hours. Based on results, enzyme concentration has a significant effect to the production of reducing sugar. The reducing sugar concentrations obtained at the end of the hydrolysis process were 8.48, 11.06, 19.16 g/L, at the enzyme concentrations of 1.25, 2.5, and 5 g/L, respectively. At any hydrolysis time, the highest sugar concentration has been achieved on the highest enzyme concentration of 5 g/L. Moreover, the effective hydrolysis time were achieved at 6 hours, at all concentration of enzyme, since the production of reducing sugar were insignificant after 6 hours. This study showed an increase in reducing sugar production by 8.25% in the hydrolysis process using OPEFB pretreated by modified pretreatment compared to the non-modified pretreatment.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2017 ◽  
Vol 224 ◽  
pp. 405-410 ◽  
Author(s):  
Wen-Chao Li ◽  
Xia Li ◽  
Lei Qin ◽  
Jia-Qing Zhu ◽  
Xiao Han ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Robinson Timung ◽  
Narendra Naik Deshavath ◽  
Vaibhav V. Goud ◽  
Venkata V. Dasu

This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1and 487.50 mg·g−1for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass usingTrichoderma reesei26291 showed maximum TRS yield of 226.99 mg·g−1for citronella and 282.85 mg·g−1for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI) of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.


2016 ◽  
Vol 675-676 ◽  
pp. 31-34
Author(s):  
Achara Kleawkla ◽  
Pannarai Chuenkruth

Sugar is very important raw material of many industries such as food, beverage and renewable energy. In this research, pretreatment and hydrolysis of agricultural wastes to produce reducing sugars for an ethanol production were investigated. The rice stalk and corn stover from agricultural wastes were firstly pretreated with sodium hydroxide at 121 °C in different time as 20 30 and 40 minutes for removal of lignin. After that, the condition of hydrolysis using sulfuric acid of the pretreated rice stalk and corn stover was optimized. The optimum condition that obtained the highest reducing sugar content from rice stalk and corn stover of 76.12 and 136.25 mg/ml were using 1.0 % v/v sulfuric acid at temperature of 121 °C for a hydrolysis time of 40 minutes. This research made value adding in the industrial processing, decrease environmental problem and reduce global warming crisis by optimized utilization of agricultural waste.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 153-162
Author(s):  
M.K. Zainol ◽  
F.W. Abdul Sukor ◽  
A. Fisal ◽  
T.C. Tuan Zainazor ◽  
M.R. Abdul Wahab ◽  
...  

This study was aimed to optimise the Alcalase® enzymatic hydrolysis extraction of Asiatic hard clam (AHC) (Meretrix meretrix) protein hydrolysate in terms of hydrolysis time, hydrolysis temperature, hydrolysis pH, and concentration of enzyme. Protein hydrolysate produced from AHC (M. meretrix) meat was used to determine the optimum hydrolysis conditions. Hydrolysis of AHC meat was optimised using the Central Composite Design Response Surface Methodology (RSM) (CCD). The relationship between four parameters such as temperature (45 – 65°C), enzyme to substrate concentration (1 – 2%), hydrolysis time (60 – 180 mins), and pH (7.5 – 9.5) to the degree of hydrolysis was investigated. The optimum conditions for enzymatic hydrolysis of AHC meat to achieve the maximum degree of hydrolysis (DH) were observed at 65°C, enzyme to substrate concentration of 1%, hydrolysis time of 60 mins, and pH 7.5. The enzymatic protein hydrolysis of AHC meat was predicted using a two factors interaction (2FI) model. Under these optimum conditions, DH's predicted value was 97.41%, which was close to the experimental value (97.89%). The freeze-dried protein hydrolysate powder was characterized concerning the proximate composition. Proximate analysis revealed that the AHC meat contains 7.92±1.76% of moisture, 2.23±0.89% of crude fat, 1.98±0.82 of ash, and 10.53±0.04% of crude protein. While the Asiatic hard clam protein hydrolysate (AHCPH) composed 9.12±0.02% of moisture, 0.80±0.29% of crude fat, and 27.76±0.10% of ash. The protein hydrolysate produced also contained high protein content (50.09±0.88%) and may serve as a good protein source.


2013 ◽  
Vol 690-693 ◽  
pp. 1198-1202 ◽  
Author(s):  
Hui Chen ◽  
Lian Jie Wang ◽  
Tao Zhang ◽  
Meng Yu ◽  
Xin Ming Wang

The article used acid protease to remove the protein in wheat straw, and investigated the influence of wheat straw without the protein to enzymatic hydrolysis. By the single factor experiments, the cellulose degradation rate of wheat straw removed the protein was significantly higher than untreated, in the same conditions of enzymatic hydrolysis. It is shortening 24h of enzymatic hydrolysis time and reducing enzyme dosage 90mg/g. By the orthogonal experiments, the optimal reaction conditions for enzymatic hydrolysis of wheat straw with protein removed is the cellulase dosage 170mg, enzymatic time 56h, solid-liquid ratio 1:20, pH 4.8, the reaction temperature 50°C. Compared to the untreated, the cellulose degradation rate increased by 35.58%.


Author(s):  
Hargono Hargono ◽  
Bakti Jos ◽  
Andri Cahyo Kumoro

Starch is a potential substrate for this purpose, but the extra cost is needed to hydrolyze it into reducing sugar. As an alternative to the expensive and energy demanding conventional hydrolysis process, the low-temperature hydrolysis is being studied. Granular Starch Hydrolysing Enzyme (GSHE) was used in the process to degrade starch into reducing sugar at 30°C and pH 4. The substrates included bitter cassava flour, sweet cassava starch, and gadung flour. Starch concentrations studied were 50, 100, 150, 200, 250, 300, 350, and 400 g/L, respectively, while concentration of enzyme was 1.5 % (w/w). The optimum condition of the process was hydrolysis using 200 g/L of substrate concentration and enzyme  concentration of 1.5% for 12 h. It was found that the reducing sugar was  49.3  g/L and the productivity of reducing sugar (Qrs) was 4.11 (gL-1 h-1).   Lineweaver-Burk plot of Michaelis-Menten equation was used to study the inhibition kinetics. The Michaelis-Menten constants (Km)  for these three substrates were determined as 141.64 g/L, 137,64 g/L and 140.84 g/L for bitter cassava flour, sweet cassava starch, and gadung flour, respectively. The value of  Vm/Km, which denotes the affinity of the enzyme to the substrate, were determined and compared, and the result showed that the affinity (Vm) to the enzyme to this substrate followed  the order of sweet cassava starch˃ bitter cassava flour˃ gadung flour, and all are non-competitive inhibitor, while the  Ki value was 0.022 h -1. 


Sign in / Sign up

Export Citation Format

Share Document