scholarly journals Experimental investigation of properties of GFRP foam cored sandwich joints

2018 ◽  
Vol 157 ◽  
pp. 05007
Author(s):  
Jana Gulanová ◽  
Matúš Margetin ◽  
Papa-Birame Gning ◽  
Andrej Chríbik

Presented paper focuses on intermediate outcomes of the bilateral project between the Faculty of Mechanical Engineering, STU in Bratislava, Slovakia and the Institute of Automotive and Transport Engineering, UBFC in Nevers, France. Thus, mechanical properties and behaviour of glass fibre reinforced polymer composite foam cored sandwich panels joints were researched to estimate the best possible joint technology. Three-point bending and four-point bending were used to evaluate flexure strength and static force-flexure curve. Based on such testing, one specific joint composition was chosen to be broadly investigated. Finally, chosen type of joint panels was tested under four-point cyclic loading to obtain its fatigue properties.

2019 ◽  
Vol 808 ◽  
pp. 177-182
Author(s):  
Petr Daněk ◽  
Iva Rozsypalová ◽  
Ondřej Karel

The paper deals with the experimental study of the behaviour of large concrete beams reinforced with glass fibre reinforced polymer (GFRP) rebars exposed to high temperatures equivalent to fire load. The four-point bending test was carried out on the beams after cooling. This study provided values for the load bearing capacity of the beams.


2003 ◽  
Vol 9 (1) ◽  
pp. 36-44
Author(s):  
Hau Y. Leung ◽  
Ramapillai V. Balendran

This paper presents some experimental results on the behaviour of flexure- and shear-deficient RC beams strengthened with external glass fibre reinforced polymer (GFRP) plates. Ten number of 2,5 m long over-designed, unplated under-design and plated under-designed beams were examined under four-point bending condition. Experimental results indicated that use of GFRP plates enhanced the strength and deformation capacity of the structurally deficient beams by altering their failure modes. Application of side plates on shear-deficient RC beams appeared to be more effective than using bottom plates on flexure-deficient RC beams. However, without any improvement on concrete compressive capacity, additional shear capacities provided to the beams under the action of side plates increased the likelihood of beam failure by concrete crushing. Simultaneous use of bottom and side plates on flexure- and shear-deficient RC beams could result in reduced deflection. The change in the neutral axis depth and GFRP strain was also addressed.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Zhen Pei Chow ◽  
Zaini Ahmad ◽  
King Jye Wong ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal–composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium–glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen’s edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.


2018 ◽  
Vol 45 (4) ◽  
pp. 263-278 ◽  
Author(s):  
Michael Rostami ◽  
Khaled Sennah ◽  
Hamdy M. Afefy

This paper presents an experimental program to justify the barrier design at the barrier–deck junction when compared to the factored applied transverse vehicular loading specified in the Canadian Highway Bridge Design Code (CHBDC). Compared to the dimensioning and the glass fibre reinforced polymer (GFRP) bar detailing of a recently crash-tested GFRP-reinforced barrier, the adopted barrier configurations in this paper were similar to those specified by Ministry of Transportation of Québec (MTQ) for TL-5 barrier except that the base of the barrier was 40 mm narrower and the deck slab is of 200 mm thickness, leading to reduction in the GFRP embedment depth into the deck slab. Four full-scale TL-5 barrier specimens were tested to collapse. Correlation between the experimental findings and the factored applied moments from CHBDC equivalent vehicle impact forces resulting from the finite-element modelling of the barrier–deck system was conducted followed by recommendations for use of the proposed design in highway bridges in Québec.


2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


2014 ◽  
Vol 970 ◽  
pp. 317-319 ◽  
Author(s):  
Syed Mohd Saiful Azwan ◽  
Yahya Mohd Yazid ◽  
Ayob Amran ◽  
Behzad Abdi

Fibre reinforced polymer (FRP) plates subject to quasi-static indentation loading were studied. The plates were fabricated from three layers of chopped strand mat glass fibre and polyester resin using vacuum infusion process. Indentation tests were conducted on the plates with loading rates of 1 mm/min, 10 mm/min, 100 mm/min and 500 mm/min using a hemispherical tip indenter with diameter 12.5 mm. The plates were clamped in a square fixture with an unsupported space of 100 mm × 100 mm. The loads and deflections at the indented location were measured to give energy absorption-deflection curves. The results showed that the loading rate has a large effect on the indentation behaviour and energy absorbed.


Sign in / Sign up

Export Citation Format

Share Document