scholarly journals Milk Somatic Cells Recognition based on Gray-Scale Difference Statistics

2018 ◽  
Vol 173 ◽  
pp. 03065
Author(s):  
Xiaoli Zhang ◽  
Heru Xue ◽  
Gao Xiaojing

In order to solve the problems in recognition of milk somatic cells and improve the recognition efficiency and accuracy, we put forward a classification algorithm based on the gray-Scale difference Statistics(GLDS). First, the algorithm extracts the gray difference matrix of the image, and from the matrix we can calculate the texture features of cell images. Then uses the K-means algorithm to segment the cells, extracts morphological features from the nucleus. We extract the 8 morphological feature parameters, 4 texture feature parameters, and use the K-fold cross-validation and random forest classification(RF) to classify samples. Experimental results show that the correct rate is 95.36% when using the random forest classifier.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


Author(s):  
Salman Qadri

The purpose of this study is to highlight the significance of machine vision for the Classification of kidney stone identification. A novel optimized fused texture features frame work was designed to identify the stones in kidney.  A fused 234 texture feature namely (GLCM, RLM and Histogram) feature set was acquired by each region of interest (ROI). It was observed that on each image 8 ROI’s of sizes (16x16, 20x20 and 22x22) were taken. It was difficult to handle a large feature space 280800 (1200x234). Now to overcome this data handling issue we have applied feature optimization technique namely POE+ACC and acquired 30 most optimized features set for each ROI. The optimized fused features data set 3600(1200x30) was used to four machine vision Classifiers that is Random Forest, MLP, j48 and Naïve Bayes. Finally, it was observed that Random Forest provides best results of 90% accuracy on ROI 22x22 among the above discussed deployed Classifiers


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yaolin Zhu ◽  
Jiayi Huang ◽  
Tong Wu ◽  
Xueqin Ren

PurposeThe purpose of this paper is to select the optimal feature parameters to further improve the identification accuracy of cashmere and wool.Design/methodology/approachTo increase the accuracy, the authors put forward a method selecting optimal parameters based on the fusion of morphological feature and texture feature. The first step is to acquire the fiber diameter measured by the central axis algorithm. The second step is to acquire the optimal texture feature parameters. This step is mainly achieved by using the variance of secondary statistics of these two texture features to get four statistics and then finding the impact factors of gray level co-occurrence matrix relying on the relationship between the secondary statistic values and the pixel pitch. Finally, the five-dimensional feature vectors extracted from the sample image are fed into the fisher classifier.FindingsThe improvement of identification accuracy can be achieved by determining the optimal feature parameters and fusing two texture features. The average identification accuracy is 96.713% in this paper, which is very helpful to improve the efficiency of detector in the textile industry.Originality/valueIn this paper, a novel identification method which extracts the optimal feature parameter is proposed.


2021 ◽  
Author(s):  
Lu Ma ◽  
Qi Zhou ◽  
Huming Yin ◽  
Xiaojie Ang ◽  
Yu Li ◽  
...  

Abstract Background: To extract the texture features of Apparent Diffusion Coefficient (ADC) images in Mp-MRI and build a machine learning model based on radiomics texture analysis to determine its ability to distinguish benign from prostate cancer (PCa) lesions using PI-RADS 4/5 score.Materials and methods: First, use ImageJ software to obtain texture feature parameters based on ADC images; use R language to standardize texture feature parameters, and use Lasso regression to reduce the dimensionality of multiple feature parameters; then, use the feature parameters after dimensionality reduction to construct image-based groups. Learn R-Logistic, R-SVM, R-AdaBoost to identify the machine learning classification model of prostate benign and malignant nodules. Secondly, the clinical indicators of the patients were statistically analyzed, and the three clinical indicators with the largest AUC values were selected to establish a classification model based on clinical indicators of benign and malignant prostate nodules. Finally, compare the performance of the model based on radiomics texture features and clinical indicators to identify benign and malignant prostate nodules in PI-RADS 4/5.Results: The experimental results show that the AUC of the R-Logistic model test set is 0.838, which is higher than the R-SVM and R-AdaBoost classification models. At this time, the corresponding R-Logistic classification model formula is: Y_radiomics=9.396-7.464*median ADC-0.584 *kurtosis+0.627*skewness+0.576*MRI lesions volume; analysis of clinical indicators shows that the 3 indicators with the highest discrimination efficiency are PSA, Fib, LDL-C, and the corresponding C-Logistic classification model formula is: Y_clinical =-2.608 +0.324*PSA-3.045*Fib+4.147*LDL-C, the AUC value of the model training set is 0.860, which is smaller than the training set R-Logistic classification model AUC value of 0.936.Conclusion: The machine learning classifier model is established based on the texture features of radiomics. It has a good classification performance in identifying benign and malignant nodules of the prostate in PI-RADS 4/5. This has certain potential and clinical value for patients with prostate cancer to adopt different treatment methods and prognosis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lei Kou ◽  
Xiao-dong Gong ◽  
Yi Zheng ◽  
Xiu-hui Ni ◽  
Yang Li ◽  
...  

Three-phase PWM voltage-source rectifier (VSR) systems have been widely used in various energy conversion systems, where current sensors are the key component for state monitoring and system control. The current sensor faults may bring hidden danger or damage to the whole system; therefore, this paper proposed a random forest (RF) and current fault texture feature–based method for current sensor fault diagnosis in three-phase PWM VSR systems. First, the three-phase alternating currents (ACs) of the three-phase PWM VSR are collected to extract the current fault texture features, and no additional hardware sensors are needed to avoid causing additional unstable factors. Then, the current fault texture features are adopted to train the random forest current sensor fault detection and diagnosis (CSFDD) classifier, which is a data-driven CSFDD classifier. Finally, the effectiveness of the proposed method is verified by simulation experiments. The result shows that the current sensor faults can be detected and located successfully and that it can effectively provide fault locations for maintenance personnel to keep the stable operation of the whole system.


2011 ◽  
Vol 140 ◽  
pp. 34-37
Author(s):  
Chang Zheng Shi ◽  
Qian Zhao ◽  
Liang Ping Luo

In this paper, we have proposed a new way to detect lung nodules with image texture features. 104 cases of lung nodules, including 31 benign cases and 73 malignant cases, are collected, and the gray-scale correlation and texture heterogeneity are computed through CT imagings for all patients. We find that the gray correlation parameters are different between benign and malignant nodules. The heterogeneity parameters in malignant nodules are higher than that in benign noduals. The gray-scale texture correlation and heterogeneity parameters have diagnostic value in differentiating benign and malignant lung nodules. This study is an exploring study, which still needs further research.


Author(s):  
Qiang Li ◽  
Lixia Gong ◽  
Jingfa Zhang

The information of seismic damage of buildings in SAR images of different time phase, especially in SAR images after earthquake, is easily disturbed by other factors, which affects the accuracy of information discrimination. In order to identify and evaluate the distribution information of the seismic damage accurately and make full use of the abundant texture features in the SAR image. The conventional method of change detection based on texture features usually takes the pixel as the calculating unit. In this paper, a method of texture feature change detection of SAR images based on watershed segmentation algorithm is proposed. Based on the optimization of texture feature parameters, the feature parameters are segmented by the watershed segmentation algorithm, and the feature object image is obtained. This method introduces the idea of object oriented, and carries out the calculation of the difference map at the object level, Finally, the classification threshold value of different types of seismic damage types is selected, and the recognition of building damage is achieved. Taking the ALOS data before and after the earthquake in Yushu as an example to verify the effectiveness of the method, the overall accuracy of the building extraction is 88.9%, Compared with pixel-based methods, it is proved that the proposed method is effective.


2019 ◽  
Vol 11 (10) ◽  
pp. 1202 ◽  
Author(s):  
Min Ji ◽  
Lanfa Liu ◽  
Runlin Du ◽  
Manfred F. Buchroithner

The accurate and quick derivation of the distribution of damaged building must be considered essential for the emergency response. With the success of deep learning, there is an increasing interest to apply it for earthquake-induced building damage mapping, and its performance has not been compared with conventional methods in detecting building damage after the earthquake. In the present study, the performance of grey-level co-occurrence matrix texture and convolutional neural network (CNN) features were comparatively evaluated with the random forest classifier. Pre- and post-event very high-resolution (VHR) remote sensing imagery were considered to identify collapsed buildings after the 2010 Haiti earthquake. Overall accuracy (OA), allocation disagreement (AD), quantity disagreement (QD), Kappa, user accuracy (UA), and producer accuracy (PA) were used as the evaluation metrics. The results showed that the CNN feature with random forest method had the best performance, achieving an OA of 87.6% and a total disagreement of 12.4%. CNNs have the potential to extract deep features for identifying collapsed buildings compared to the texture feature with random forest method by increasing Kappa from 61.7% to 69.5% and reducing the total disagreement from 16.6% to 14.1%. The accuracy for identifying buildings was improved by combining CNN features with random forest compared with the CNN approach. OA increased from 85.9% to 87.6%, and the total disagreement reduced from 14.1% to 12.4%. The results indicate that the learnt CNN features can outperform texture features for identifying collapsed buildings using VHR remotely sensed space imagery.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ying Wu ◽  
Jikun Liu

AbstractWith the rapid development of gymnastics technology, novel movements are also emerging. Due to the emergence of various complicated new movements, higher requirements are put forward for college gymnastics teaching. Therefore, it is necessary to combine the multimedia simulation technology to construct the human body rigid model and combine the image texture features to display the simulation image in texture form. In the study, GeBOD morphological database modeling was used to provide the data needed for the modeling of the whole-body human body of the joint and used for dynamics simulation. Simultaneously, in order to analyze and summarize the technical essentials of the innovative action, this experiment compared and analyzed the hem stage of the cross-headstand movement of the subject and the hem stage of the 180° movement. Research shows that the method proposed in this paper has certain practical effects.


Sign in / Sign up

Export Citation Format

Share Document