scholarly journals A preparation method for the treatment of Cr(VI) composite adsorbent Ca-AC

2018 ◽  
Vol 175 ◽  
pp. 01005
Author(s):  
Minjie Qin ◽  
Zhaoju He ◽  
Shen Liu ◽  
Li Zhu ◽  
Yanqin Lu

The effects of weight ratio of Eucalyptus and CaCl2, carbonization temperature and carbonization time on the composite adsorbent (Ca-AC) were studied. The best conditions for composite adsorbent (Ca-AC) were obtained: the weight ratio of CaCl2 to the eucalyptus sawdust was 2:1; the carbonization temperature was 650 °C; the carbonization time was 80 min. The Ca-AC yield reached 28.88%; the Cr(VI) adsorption value was 131.03 mg±g-1. The morphology and structure of the adsorbents were characterized. The results showed that the specific surface area of Ca-AC can reach 713 m2±g-1. The carboxyl, hydroxyl, lactones groups and amino could be determined on the activated carbon surface.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 496
Author(s):  
Krzysztof Kuśmierek ◽  
Andrzej Świątkowski ◽  
Katarzyna Skrzypczyńska ◽  
Lidia Dąbek

Three carbon materials with a highly diversified structure and at the same time much less different porosity were selected for the study: single-walled carbon nanotubes, heat-treated activated carbon, and reduced graphene oxide. These materials were used for the adsorption of 2,4-D herbicide from aqueous solutions and in its electroanalytical determination. Both the detection of this type of contamination and its removal from the water are important environmental issues. It is important to identify which properties of carbon materials play a significant role. The specific surface area is the major factor. On the other hand, the presence of oxygen bound to the carbon surface in the case of contact with an organochlorine compound had a negative effect. The observed regularities concerned both adsorption and electroanalysis with the use of the carbon materials applied.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hoang Thu Ha ◽  
Pham Tuan Phong ◽  
Tran Dinh Minh

This work reveals the As(V) adsorption behaviors onto iron oxide (Fe3O4) nanoparticles modified activated carbon (AC), originally developed from biochar (BC), as a green adsorbent denoted by FAC. Since FAC has abundant surface functional groups and a desired porous structure that is favorable for the removal of As(V) in contaminated water, FAC has greatly enhanced the As(V) adsorption capacity of the original BC. Various methods were employed to characterize the FAC characteristics and adsorption mechanism, including pHpzc determination, BET specific surface area, elemental analysis (EA), and scanning electron microscopy (SEM). Results show that the AC surface was successfully modified by iron oxide nanoparticles, enhancing the porosity and specific surface area of original adsorbent. Batch adsorption tests indicated a well-fitted Langmuir model and pseudo-second-order model for As(V) adsorption. Additionally, the highest adsorption capacity (Qmax = 32.57 mg/g) by FAC was higher than previously reported literature reviews. Until now, no article was conducted to research the effect of carbon surface chemistry and texture on As removal from waters. It is required to obtain a rational view of optimal conditions to remove As from contaminated water.


2021 ◽  
Vol 2 ◽  
pp. 21-32
Author(s):  
Ju.V. Таmarkina ◽  
I.B. Frolova ◽  
O.O. Velichko ◽  
V.O. Кucherenko

The aim of the work is to evaluate the adsorption capacity of activated carbons (ACs) from brown coal in relation to phenol (Ph) and 4-chlorophenol (CPh) and the influence of the AСs formation temperature under carbonization with potassium hydroxide on capacities. The samples of ACs were prepared by heating with KOH (1 g/g, 1 h) at a given temperature in the range of t=400-800°C and marked as AC(t). The ACs porosity characteristics were determined by low-temperature (77 K) adsorption – desorption nitrogen isotherms (Micromeritics ASAP 2020) calculated by the 2D-NLDFT method. They are as follows: total pore volume Vt (cm3 /g), specific surface area S (m2 /g), volume (Vmi) and surface (Smi) of micropores, volume (V1nm) and surface (S1nm) of subnanopores, the total surface of meso- and macropores Sme+ma. The adsorption of phenol and 4-chlorophenol was determined at equilibrium concentrations in aqueous solutions ≤5 mmol/l (25 °C). The alkaline carbonization temperature of brown coal was found to be a key factor in the formation of micro- and subnanopores, the growth of the AC specific surface area (from 12.8 m2 /g to 1142 m2 /g) and adsorption activity against phenolic compounds. Its increase to 800°C causes an exponential increase in the AC adsorption capacity in 8.7 times (Ph) and 6.7 times (CPh), which is proportional to the concentration of surface adsorption centers (AdCs). The values of the effective activation energy of forming AdCs being active in relation to adsorbates were determined as 29.5 kJ/mol (Ph) and 31.5 kJ/mol (CPh). The kinetics of Ph and CPh absorption was found to obey the pseudosecond-order model, and the adsorption rate is limited by the interaction of the adsorbate molecules with the AdCs. Adsorption isotherms at equilibrium concentrations ≤ 5 mmol/l are approximated by the Langmuir model (R2 ≥ 0.994). Compared with Ph, the degree of CPh extraction is much higher, which is a consequence of its stronger connection with the AC surface. The specific adsorption capacity for Ph and CPh shows a sharp decrease (10-16 times) with increasing carbonization temperature from 400° C to 550 °C and a weak temperature dependence at 550-800 °C. In this range, ACs are formed with similar concentrations of AdCs, but different for various phenolic compounds. Adsorption on brown coal ACs was postulated to include π-π interaction, formation of electron-donor-acceptor complexes and formation of hydrogen bonds, but their contributions depend on adsorbate nature and they change while increasing alkaline carbonization temperature. Keywords: brown coal, alkaline carbonization, activated carbon, porosity, adsorption, phenol, 4-chlorophenol. Corresponding author Таmarkina Ju.V., e-mail: [email protected]


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3811
Author(s):  
Zhongbao Liu ◽  
Jiayang Gao ◽  
Xin Qi ◽  
Zhi Zhao ◽  
Han Sun

In this study, the hydrothermal method was used to synthesize MIL-101(Cr), and activated carbon (AC) with different content was incorporated in to MIL-101(Cr), thereby obtaining AC-MIL-101(Cr) composite material with a huge specific surface area. The physical properties of MIL-101(Cr) and AC-MIL-101(Cr) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption and desorption and specific surface area testing, and ethanol vapor adsorption performance testing. The results show that with the increase of activated carbon content, the thermal stability of AC-MIL-101(Cr) is improved. Compared with the pure sample, the BET specific surface area and pore volume of AC-MIL-101(Cr) have increased; In the relative pressure range of 0–0.4, the saturated adsorption capacity of AC-MIL-101(Cr) to ethanol vapor decreases slightly. It is lower than MIL-101(Cr), but its adsorption rate is improved. Therefore, AC-MIL-101(Cr)/ethanol vapor has a good application prospect in adsorption refrigeration systems. The exploration of AC-MIL-101(Cr) composite materials in this paper provides a reference for the future application of carbon-based/MOFS composite adsorbent/ethanol vapor working fluid in adsorption refrigeration.


2011 ◽  
Vol 415-417 ◽  
pp. 1265-1272
Author(s):  
Wen Biao Zhang ◽  
Wen Zhu Li ◽  
Bing Song Zheng

Miscanthus is a highly productive, rhizomatous, C4 perennial grass that should be considered as an excellent active carbon precursor. This paper compares the charcoal characterization and chemical composition between M. sinensis and M. floridulus. Species differed in water content, hot water extract, 1% NaOH extract, organic solvent extract, cellulose, lignin and ash. Carbonization temperatures have effects on charcoal yields of Miscanthus, which ranged from 23.5% to 48.0% for M. sinensis and 11.3% to 37.2% for M. floridulus. Water content, charcoal density, pH value, and specific surface area of charcoal characterization varied between two species of Miscanthus. The specific surface area increased with the increase of carbonization temperature. The highest specific surface area of M. sinensis and M. floridulus was 351.74 m2g−1and 352.74 m2g−1, respectively, when the carbonization temperature was 800°C.


2015 ◽  
Vol 749 ◽  
pp. 17-21 ◽  
Author(s):  
Joanna Sreńscek Nazzal ◽  
Karolina Glonek ◽  
Jacek Młodzik ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
...  

Microporous carbons prepared from commercial activated carbon WG12 by KOH and/or ZnCl2 treatment were examined as adsorbents for CO2 capture. The micropore volume and specific surface area of the resulting carbons varied from 0.52 cm3/g (1374 m2/g) to 0.70 cm3/g (1800 m2/g), respectively. The obtained microporous carbon materials showed high CO2 adsorption capacities at 40 bar pressure reaching 16.4 mmol/g.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


2019 ◽  
Author(s):  
Kevin Gu ◽  
Eric J. Kim ◽  
Sunil K. Sharma ◽  

<p>Carbon aerogel possesses unique structural and electrical properties, such as high mesopore volume, specific surface area, and electrical conductivity, which make it suitable for use as a catalyst support in Proton Exchange Membrane Fuel Cells (PEMFC). In this study, we present a novel synthesis of highly mesoporous carbon aerogel via ambient-drying and investigate its application in PEMFCs. The structural effects of activation on carbon aerogel were also studied. The TEM, XRF, Non Localized Density Function Theory (NLDFT) and BJH analysis were carried out to observe the morphology and pore structure. Pt on carbon aerogel and activated carbon aerogel show efficient activity in both oxygen reduction and hydrogen oxidation reactions compared to Pt on Vulcan XC-72, with increases up to 715% and 195% in specific power density, respectively. The enhanced performance of carbon aerogel is attributed to its large specific surface area and high mesopore to micropore ratio. Accelerated stress tests show that carbon aerogel has comparable durability with Vulcan XC-72, while activated carbon aerogel is less durable than both materials. Thus, the mesoporous carbon aerogel provides an efficient, lower-cost alternative to existing microporous carbon material as a catalyst support in PEMFCs.</p><p></p>


2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


Sign in / Sign up

Export Citation Format

Share Document