Influence of Side-Pressure Coefficient on Deformation of Tunnel Surrounding Rock and Bolt Axial Force

2015 ◽  
Vol 741 ◽  
pp. 138-142 ◽  
Author(s):  
Feng Hai Ma ◽  
Yan Wang ◽  
Zhi Bin Wang

Internal force and deformation of surrounding rock and supporting structure of the nonlinear research is the use of finite element software ADINA by ideal elastic-plastic constitutive model.Results show that the lateral pressure coefficient increased from 0 to 1, and even decrease sharply arch sedimentation of surrounding rock, side wall horizontal displacement towards the hole along the radial direction development gradually reduced to 0 and reverse to the hole, when the lateral pressure coefficient is less than 0.5, bolt axial force biggest change is not obvious, when lambda increases gradually, the largest bolt axial force significantly increased.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4773
Author(s):  
Jianyu Li ◽  
Hong Li ◽  
Zheming Zhu ◽  
Ye Tao ◽  
Chun’an Tang

Geothermal power is being regarded as depending on techniques derived from hydrocarbon production in worldwide current strategy. However, it has artificially been developed far less than its natural potentials due to technical restrictions. This paper introduces the Enhanced Geothermal System based on Excavation (EGS-E), which is an innovative scheme of geothermal energy extraction. Then, based on cohesion-weakening-friction-strengthening model (CWFS) and literature investigation of granite test at high temperature, the initiation, propagation of excavation damaged zones (EDZs) under unloading and the EDZs scale in EGS-E closed to hydrostatic pressure state is studied. Finally, we have a discussion about the further evolution of surrounding rock stress and EDZs during ventilation is studied by thermal-mechanical coupling. The results show that the influence of high temperature damage on the mechanical parameters of granite should be considered; Lateral pressure coefficient affects the fracture morphology and scale of tunnel surrounding rock, and EDZs area is larger when the lateral pressure coefficient is 1.0 or 1.2; Ventilation of high temperature and high in-situ stress tunnel have a significant effect on the EDZs scale; Additional tensile stress is generated in the shallow of tunnel surrounding rock, and the compressive stress concentration transfers to the deep. EDZs experiences three expansion stages of slow, rapid and deceleration with cooling time, and the thermal insulation layer prolongs the slow growth stage.


2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Wu ◽  
Yanlong Chen ◽  
Liang Chen ◽  
Xianbiao Mao ◽  
Wei Zhang

Based on the Mohr–Coulomb criterion, a new analytical solution of a circular opening under nonuniform pressure was presented, which considered rock dilatancy effect and elastic-brittle-plastic failure characteristics. In the plastic zone, the attenuation of Young’s modulus was considered using a radius-dependent model (RDM), and solution of the radius and radial displacement of plastic zone was obtained. The results show that many factors have important impact on the response of the surrounding rock, including lateral pressure coefficient, dilation coefficient, buried depth, and Young’s modulus attenuation. Under nonuniform pressure condition, the distribution of plastic zone and deformation around the opening show obvious nonuniform characteristic: with the increasing of lateral pressure coefficient, the range of plastic zone and deformation decrease gradually at side, while they increase at roof and floor, and the location of the maximum value of support and surrounding rock response curve transfers from side to roof. Based on the analytical results and engineering practice, an optimization method of support design was proposed for the circular opening under nonuniform pressure.


2011 ◽  
Vol 261-263 ◽  
pp. 1044-1048
Author(s):  
Yun Xiang He ◽  
Heng Bin Wu

The ground-liner interaction research has important engineering value for the underground engineering design optimization and evaluation of construction safety. The interface between ground and liner is considered. In this paper, the effect of different ground-liner stiffness ratio, lateral pressure coefficient, thickness and different interface stiffness ratio and other factors on the support structure for internal forces and interface stress is analyzed. The analysis results show that liner internal force and interface stress increase with the increase of stiffness ratio between liner and ground, and the impact is very significant. Effect of lateral pressure coefficient on liner internal force and interface stress mainly reflects on laws around the cavern, where 1 is the limitation of lateral pressure coefficient. It presents symmetrical distribution. With the increase of liner thickness, the liner internal force and interface normal stress increase, but it make no difference to the contact interface tangential stress.


2011 ◽  
Vol 243-249 ◽  
pp. 3588-3598 ◽  
Author(s):  
Zhi Min Chen ◽  
De An Zhao ◽  
Yun Yan Yu

Muzhailing tunnel of Lanyu railway is located in the western part of Qinling Mountain, its geological conditions are very complex. There is an extrusion fault, f16, in the Dazhangou inclined shaft, and the strata are consist of slate, sandston and carbonaceous slate. The measured geostress results showed that this location is in a very high level of geostress state, the maximum horizontal principal geostress is nearly vertical to Dazhangou inclined shaft and the measured horizontal lateral pressure coefficient is 3.79. Soft rock crushing, high geostress state, high horizontal lateral pressure coefficient and other factors led to the poor stability for the shaft. During the construction process of the shaft, the deformation characteristics are showed as strong horizontal deformation, rapid and large rate initial deformation, and long duration. According to rock lithology conditions, geostress conditions, supporting structure and dynamic construction, deformation characteristics of the shaft, the large horizontal deformation was caused by the interaction of high horizontal lateral pressure coefficient and poor geological conditions and other factors, but the main reasons of the large horizontal deformation were recognized as uneven vertical and horizontal load, extreme adverse load conditions of support structure, based on the theoretical and 3D numerical analysis. Through the analysis of the interaction of support structure and the surrounding rock, the smaller deformation in front of the working face during tunnel excavation is took place, the less stress release would be took place and the larger the ultimate load would be on the support structure. Tremendous stress was withstood by the arch crown, larger wall tensile stress was appeared at side wall, the support structure is in a poor stress state. This paper provides a theoretical basis for dynamic design and construction of the Dazhangou inclined shaft and Muzhailing tunnel.


1974 ◽  
Vol 8 (8) ◽  
pp. 496-499
Author(s):  
V. A. Belousov ◽  
�. �. Kol'man-Ivanov ◽  
I. E. Semenov-Ezhov ◽  
N. A. Stepanov ◽  
I. P. Sukharev

2013 ◽  
Vol 353-356 ◽  
pp. 1515-1518
Author(s):  
Zhen Wang ◽  
Chun Han

The safety response of joint rock underground tunnels is one of the many problems that draw the attention of geology specialists and scholars. Adopting two dimensional discrete element method, a numerical model of joint rock underground cavern is established to study its stability. The buried depth and the lateral pressure coefficient are considered respectively. The result shows: when the lateral pressure coefficient is identical, the depth is bigger the displacement is more bigger, and the displacement is strong influenced by the buried depth when the lateral pressure coefficient is big; In the same depth the tunnel is buried, the tunnel rocks displacement is slightly influenced by the lateral pressure coefficient when it is small, but the influence is seriously as the lateral pressure coefficient is big. The simulation in the context can be used to provide guide for joint rock tunnel excavation and supporting.


2013 ◽  
Vol 838-841 ◽  
pp. 1346-1351
Author(s):  
Yong Ding Tian ◽  
Cong Cai ◽  
Jia Peng ◽  
Jin Hua Wu ◽  
Jia Qi Zhang

Based on the background of a highway, for tunnels with small spacing of complex stress condition, adopt various construction schemes for numerical simulation using Midas Gts finite element software under the condition of deep-buried small net distance tunnel. Use full-face excavation method, benching tunneling construction method and both side heading method to compare surrounding rock stress, surrounding rock deformation, internal force of bolt and shotcrete support system structure, lateral-wall displacement and stability of surrounding rock. Analyse displacement and stress change laws before and after the excavation of tunnel surrounding rock and supporting structure under different schemes.


2011 ◽  
Vol 99-100 ◽  
pp. 1106-1112
Author(s):  
Fang Yuan ◽  
Cheng Ying Dong ◽  
Yao Hui Song ◽  
Song Song Zhang

The scale model of squat silo in large diameter was established with Particle Flow Code (PFC3D) in this paper. This scale model uses the centrifuge model test principle for reference and provides the field of gravity in the calculation of archetypal squat silo. When the silo filled with granules reaches static equilibrium state, record the static lateral pressure measurement values of its each column measured wall, followed by eccentric discharge simulation in different operating conditions, while monitoring the changes of Measured walls in five different directions during discharging granules, in order to analyze the influence of eccentric discharge on the lateral pressure of large diameter squat silos wall. Thus the following conclusion can be obtained: (1)Overpressure coefficient is close extensive between eccentric distance and far extensive between physical reference of storing material.(2)Under the same condition, the overpressure coefficient of same side wall will be minished with the increasing of discharge port.(3)For the same silo model, maximum pressure coefficient is related with eccentric distance, discharge port size and the position with the wall measured, and its value is greater than the calculated value of standard, because the overpressure coefficient calculation formula is only related with silo diameter and eccentric distance, and this is worth further discussion.


Sign in / Sign up

Export Citation Format

Share Document