Numerical Investigation into Rockburst Proneness of Deep-Buried Tunnels with Arch-Shaped Wall

2011 ◽  
Vol 250-253 ◽  
pp. 1192-1195
Author(s):  
Xin Yu Wang ◽  
Zhu Shan Shao ◽  
Yu Ming Cui

During the construction of the deep-buried tunnels, high surrounding rock stress and the rockburst are the important factors affecting the stability of surrounding rock. Xiabandi hydraulic engineering is the key project in Tarim River basin. Due to the deep buried excavation, rockburst is particularly prominent and should be received adequate attention. According to the rockburst practice during construction, numerical analysis is adopted to study the stress characteristics along depth with the same lateral pressure coefficient. Furthermore, the rockburst tendency along the tunnel with different burying depth is investigated. The conclusion is of great value to guide the rockburst control during the tunnel design and construction.

2018 ◽  
Vol 175 ◽  
pp. 03025
Author(s):  
Feng Zhou ◽  
Hongjian Jiang ◽  
Xiaorui Wang

The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.


2018 ◽  
Vol 175 ◽  
pp. 04016
Author(s):  
NIU Yan ◽  
Ji Yafei ◽  
Wang Zhao

Tunnel excavation will lead to the immediate surrounding rock unloading caused by the surrounding rock stress release, the stability of the surrounding rock have a certain impact. In this paper, finite element software ANSYS and finite difference software FLAC3D are used to simulate the excavation and lining process of circular tunnel. The influence of excavation on the rock stability around circular tunnel is analyzed, and the effect of applying lining on the stability of surrounding rock is analyzed. Evaluation criteria selection hole displacement, stress and plastic area of three factors.


2019 ◽  
Vol 17 (1) ◽  
pp. 138-147
Author(s):  
Ming Ji ◽  
Hongjun Guo

Abstract In-situ rock stress was measured in the development roadway of Gucheng coal mine at +420 m level by using the stress relief method of hollow inclusion. The results show that the first principal stress was the vertical stress, the maximum horizontal principal stresses were distributed in the range of N10°E and N20°E, and the average side pressure coefficient was 0.83. There was a large difference between the maximum horizontal principal stress and the minimum horizontal principal stress, and the calculated average ratio was 2.02. A spatial stress conversion model of the horizontal roadway based on the measured in-situ rock stresses was built, and the distribution laws of stress and displacement of the surrounding rock of the roadway were analyzed in depth along the changing radial direction. According to the Mohr–Coulomb failure criterion, an asymmetric surrounding rock plastic zone was obtained and the plastic failure radius was 5.0 m. Considering the roadway-surrounding rock differential control, the stronger support in the risk areas was practiced and validated. The work in this paper would provide some ideas for the design and optimization of the support parameters for roadway engineering.


2014 ◽  
Vol 1030-1032 ◽  
pp. 815-818
Author(s):  
Yuan Lai ◽  
Zhen Rong Lin ◽  
Yan Feng Tian

Now, the extending of underground engineering was scarcely concerned. Through combining with engineering, the subside extending intersection construction process and supporting measure of underground cavities has been simulated based on building up 2D elasto-plastic FEM model. The stability of surrounding rock, stress and displacement field in extending construction are analyzed, and a few meaningful conclusions are presented. What has gained that served as scientific bases and technical guidance for underground cavities extending and reconstruction engineering.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4773
Author(s):  
Jianyu Li ◽  
Hong Li ◽  
Zheming Zhu ◽  
Ye Tao ◽  
Chun’an Tang

Geothermal power is being regarded as depending on techniques derived from hydrocarbon production in worldwide current strategy. However, it has artificially been developed far less than its natural potentials due to technical restrictions. This paper introduces the Enhanced Geothermal System based on Excavation (EGS-E), which is an innovative scheme of geothermal energy extraction. Then, based on cohesion-weakening-friction-strengthening model (CWFS) and literature investigation of granite test at high temperature, the initiation, propagation of excavation damaged zones (EDZs) under unloading and the EDZs scale in EGS-E closed to hydrostatic pressure state is studied. Finally, we have a discussion about the further evolution of surrounding rock stress and EDZs during ventilation is studied by thermal-mechanical coupling. The results show that the influence of high temperature damage on the mechanical parameters of granite should be considered; Lateral pressure coefficient affects the fracture morphology and scale of tunnel surrounding rock, and EDZs area is larger when the lateral pressure coefficient is 1.0 or 1.2; Ventilation of high temperature and high in-situ stress tunnel have a significant effect on the EDZs scale; Additional tensile stress is generated in the shallow of tunnel surrounding rock, and the compressive stress concentration transfers to the deep. EDZs experiences three expansion stages of slow, rapid and deceleration with cooling time, and the thermal insulation layer prolongs the slow growth stage.


2012 ◽  
Vol 170-173 ◽  
pp. 1735-1739
Author(s):  
Ying Na Dong ◽  
Qiang Huang

The surrounding rock stress field monitor has been done in excavation by vibrating wire transducer. The field monitoring data are compared with numerical simulation results. The result shows: Vibrating wire transducer can record the stress variation of surrounding rock and support. Surrounding rock stress changes violently at every excavation step, such as lower bench excavation, the stress variation is mainly controlled by the spatial effect. When the distance from excavation face to the monitoring section is more than a tunnel diameter, the rock stress variation is mainly affected by time and it is relatively smooth and continuous.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Gaofeng Li ◽  
...  

In order to further explore the deformation and failure essence of the deep coal body, based on the characteristics of surrounding rock stress adjustment before and after solid coal roadway excavation, an experiment of unloading confining pressure and loading axial pressure of the coal body was designed and conducted in this study. Based on test results, the failure mechanics and energy characteristics of the coal body were analyzed through experiments. Rapid unloading is considered a key factor contributing to lateral deformation and expansion failure, which exacerbates the deterioration of coal body and reduces the deformation energy storage capacity of coal. On the other hand, the larger loading rate tends to shorten the accumulation time of microcracks and cause damage to the coal body, resulting in strengthening the coal body and improving energy storage. Under the circumstance that the coal body is destroyed, the conversion rates of the internal deformation energy and dissipated energy are more significantly affected by unloading rate. The increasing unloading rate and rapid decreases in the conversion rate of deformation energy make the coal body more vulnerable to damage. Under the same stress conditions, the excavation unloading is more likely to deform, destroy, or even throw the coal than the experiment unloading. In order to reduce or avoid the occurrence of deep roadway excavation accidents, the understanding of the excavation unloading including possible influencing factors and the monitoring of the surrounding rock stress and energy during the excavation disturbance should be strengthened. It can be used as the basis for studying the mechanism of deformation and failure of coal and rock and dynamic disasters in deep mines, as well as the prediction, early warning, prevention, and control of related dynamic disasters.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Wu ◽  
Yanlong Chen ◽  
Liang Chen ◽  
Xianbiao Mao ◽  
Wei Zhang

Based on the Mohr–Coulomb criterion, a new analytical solution of a circular opening under nonuniform pressure was presented, which considered rock dilatancy effect and elastic-brittle-plastic failure characteristics. In the plastic zone, the attenuation of Young’s modulus was considered using a radius-dependent model (RDM), and solution of the radius and radial displacement of plastic zone was obtained. The results show that many factors have important impact on the response of the surrounding rock, including lateral pressure coefficient, dilation coefficient, buried depth, and Young’s modulus attenuation. Under nonuniform pressure condition, the distribution of plastic zone and deformation around the opening show obvious nonuniform characteristic: with the increasing of lateral pressure coefficient, the range of plastic zone and deformation decrease gradually at side, while they increase at roof and floor, and the location of the maximum value of support and surrounding rock response curve transfers from side to roof. Based on the analytical results and engineering practice, an optimization method of support design was proposed for the circular opening under nonuniform pressure.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zhang ◽  
Huichen Xu ◽  
Peng Song ◽  
Xiaoming Sun ◽  
Manchao He ◽  
...  

The stress concentration of gob-side entry surrounding rock is a hot topic in coal mining. In this paper, through theoretical analysis and numerical simulation, the pressure relief mechanism of the gob-side entry retaining by roof cutting and pressure release (RCPR) and the spatiotemporal development law of surrounding rock stress of the gob-side entry were analyzed. The studies showed that the gob-side entry retaining by RCPR shortened the length of the lateral cantilever by directional roof cutting, which weakened the stress level of the gob-side entry. In the meantime, the goaf gangues could play a good filling role by using their breaking and swelling characteristics under the action of gangue-blocking supports and further optimized the stress environment along the roadway. Field industrial tests verified that the gob-side entry retaining by RCPR had a significant effect on pressure relief, and the surrounding rock stress and deformation tended to stabilize after about 160 m of lagging working face. Numerical analysis reproduced the whole process of “mining-retention-using” of roof cutting roadway and revealed that surrounding rocks were always in the zone of relative stress reduction during the whole process. The peak value of mining-induced lateral stress was about 10 m away from the middle point of the gob-side entry. The change of surrounding rock stress could be divided into three stages: significant increase, dynamic adjustment, and stable stage. However, during the second mining, the stress connected zone would appear on the leading working face, and the stress concentration in this zone was significant. Based on the above analysis, we concluded that the new technology could be applied to the medium-thickness coal seam in the composite roof.


Sign in / Sign up

Export Citation Format

Share Document