scholarly journals Near Fault Effect on the Response of Single Hinged Compliant Offshore Tower

2018 ◽  
Vol 203 ◽  
pp. 01015
Author(s):  
Syed Yusuf Javed

The response of compliant offshore structure under simultaneous action of random waves and earthquake loading has been analyzed. Since earthquake forces play a significant role in affecting the response of these offshore structures, comparative studies have been carried out considering near fault and far fault seismic excitations in the presence of moderate random sea waves. The offshore tower is modeled as an inverted pendulum with a cylindrical shaft connected by an articulated joint at the base. Seismic forces are evaluated by dividing the tower shaft into finite elements with masses lumped at the nodes. The nonlinearities associated with the system owing to variable submergence, drag force, variable buoyancy along with the geometry are considered in the analysis. The nonlinear dynamic equation of motion is formulated considering Lagrangian approach, which is solved in time domain by the Newmark-beta integration scheme. The sea state conditions, more precisely the water particle kinematics are evaluated using Airy’s wave theory along with the stretching modifications, as suggested by Chakrabarti. To minimize the dynamic responses, emphasis has to be given to the variations in height and position of the buoyancy chamber in extreme wave condition. The results are expressed in the form of time histories of deck displacement, hinge rotation, hinge shear and the bending moment. Parameters like maximum, minimum, mean and standard deviation are also determined by statistical analysis of response time histories of the dynamic responses at articulated joint.

Author(s):  
Yousun Li

In the time domain simulation of the response of an offshore structure under random waves, the time histories of the wave field should be generated as the input to the dynamic equations. Herein the wave field is the wave surface elevation, the water particle velocities and accelerations at structural members. The generated time histories should be able to match the given wave-field spectral descriptions, to trace the structural member motions if it is a compliant offshore structure, and be numerically efficient. Most frequently used generation methods are the direct summation of a limited number of cosine functions, the Fast Fourier Transformation, and the digital filtering model. However, none of them can really satisfy all the above requirements. A novel technique, called the Modulated Discrete Fourier Transformation, has been developed. Under this method, the wave time histories at each time instant is a summation of a few time-varying complex functions. The simulated time histories have continuous spectral density functions, and the motions of the structural members are well included. This method seems to be superior to all the conventional methods in terms of the above mentioned three requirements.


Author(s):  
Andrew Cornett ◽  
Scott Baker

The objectives of this work are to close some of the knowledge gaps facing designers tasked with designing new offshore structures or upgrading older structures located in shallow waters and exposed to energetic multi-directional waves generated by passing hurricanes or cyclones. This will be accomplished by first investigating and characterizing the natural variability of the maximum wave heights and crest elevations found in multiple 2-hour long realizations of several short-crested shallow-water near-breaking seastates. Following this, the variability and repeatability of peak pressures and peak loads exerted on a 1/35 scale model of a gravity-based offshore structure are explored. The analysis focuses on establishing extreme value distributions for each realization, quantifying their variability, and exploring how the variability is diminished when results from multiple seastate realizations and repeated tests are combined. The importance of considering multiple realizations of a design wave condition when estimating peak values for use in design is investigated and highlighted.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/16bCsMd0OMc


Author(s):  
Syed Danish Hasan ◽  
Nazrul Islam ◽  
Khalid Moin

The response of offshore structures under seismic excitation in deep water conditions is an extremely complex phenomenon. Under such harsh environmental conditions, special offshore structures called articulated structures are feasible owing to reduced structural weight. Whereas, conventional offshore structure requires huge physical dimensions to meet the desired strength and stability criteria, therefore, are uneconomical. Articulated offshore towers are among the compliant offshore structures. These structures consist of a ballast chamber near the bottom hinge and a buoyancy chamber just below the mean sea level, imparting controlled movement against the environmental loads (wave, currents, and wind/earthquake). The present study deals with the seismic compliance of a double-hinged articulated offshore tower to three real earthquakes by solving the governing equations of motion in time domain using Newmark’s-β technique. For this purpose Elcentro 1940, Taft 1952 and Northridge 1994 earthquake time histories are considered. The tower is modeled as an upright flexible pendulum supported to the sea-bed by a mass-less rotational spring of zero stiffness while the top of it rigidly supports a deck in the air (a concentrated mass above water level). The computation of seismic and hydrodynamic loads are performed by dividing the tower into finite elements with masses lumped at the nodes. The earthquake response is carried out by random vibration analysis, in which, seismic excitations are assumed to be a broadband stationary process. Effects of horizontal ground motions are considered in the present study. Monte Carlo simulation technique is used to model long crested random wave forces. Effect of sea-bed shaking on hydrodynamic modeling is considered. The dynamic equation of motion is formulated using Lagrangian approach, which is based on energy principle. Nonlinearities due to variable submergence and buoyancy, added mass associated with the geometrical non-linearities of the system are considered. The results are expressed in the form of time-histories and PSDFs of deck displacement, rotational angle, base and hinge shear, and the bending moment. The outcome of the response establishes that seismic sea environment is an important design consideration for successful performance of hinges, particularly, if these structures are situated in seismically active zones of the world’s ocean.


1990 ◽  
Vol 112 (1) ◽  
pp. 14-20 ◽  
Author(s):  
K. Yoshida ◽  
H. Suzuki ◽  
N. Oka

This paper presents a preliminary attempt to control the dynamic response of a towerlike offshore structure subjected to regular waves. The structures are modeled in two ways. One is a vertical rigid pipe supported at the lower end by a pin joint. The other is a vertical flexible pipe fixed at the lower end. The formulation of the optimal control shows that the control consists of a feedback control and a feedforward control based on the disturbance. In this research, two types of feedforward control are employed apart from the optimality. One is to compensate the entire wave forces acting on the structure. The other is on-off control to compensate the principal Fourier component of the wave forces by using the three states of the thruster, forward, stop and backward. The displacement and deformation of the structures were measured by an ultrasonic measurement system. The surface elevation was measured by a capacitance-type wave height meter. These data were sampled and processed by a 16-bit microprocessor, and the thrust was applied by a propeller-type thruster. The performance of the control was satisfactory, and the responses of the controlled structure were reduced to about 30 percent of those of the uncontrolled system.


Author(s):  
Saeid Kazemi ◽  
Atilla Incecik

A three-dimensional hydrodynamic analysis of interaction between a floating offshore structure and sea waves has been carried out using a novel approach which is based on the weighted residual technique and the direct boundary element method. The main advantage of the direct boundary element method is the fact that one can determine the total velocity potential directly. Direct BEM is more versatile and computationally more efficient than indirect BEM. Besides, the BEM can easily be coupled with other numerical methods, e.g. finite element method (FEM) in order to carry out structural analysis of deck of the platform due to impact. Firstly, the boundary value problem of three-dimensional interaction between regular sea waves and a semi-submersible will be described. Secondly, the direct boundary element method has been applied to predict hydrodynamic behaviour of Khazar Semi-Submersible Drilling Unit (KSSDU), which is the largest semi-submersible drilling platform under construction for a location in the Caspian Sea, North of Iran. The rigid body motion responses in six degrees of freedom of KHAZAR semi-submersible in response to encountering waves have been calculated by using the direct boundary element method. The results obtained from the direct BEM will be compared with those obtained by the results based on the conventional boundary element method (indirect BEM) which were obtained by the designers of KHAZAR semi-submersible.


Author(s):  
H. Matin Nikoo ◽  
M. Zeinoddini ◽  
H. Estekanchi ◽  
M. Golestani

This paper introduces a novel methodology for design and assessment of offshore structures exposed to irregular sea waves. For this, Constrained NewWave (CNW) is integrated with the Endurance Time Analysis (ETA) methodology, which is basically developed for the performance based analysis of onshore structures to earthquake loads. In this approach, the offshore structure is simulated in time-domain under a set of calibrated intensifying wave functions. They are devised to represent a gradually increasing roughness of the sea state by time. A performance index such as base shear, drift or stress in a critical structural members are monitored until they reach to a predefined maximum value. A higher endurance time (corresponding to a higher wave height) is to be interpreted as a better performance of structure. Ability to consider spectral features of waves, waves’ irregularity, the wave-in-deck impacts, utilizing a relatively simple approach, requiring relatively low computational times and capability to consider any desirable damage indices are the advantages of this novel method. The method can be used in the design stage, collapse analysis and for the assessment of existing offshore platforms. In this paper the effectiveness of this method has been examined on offshore jacket platforms. The results obviously have highlighted the potentials of this approach for the dynamic, time-domain, non-linear analysis and assessment of offshore platforms.


Author(s):  
S. N. A. Tuhaijan ◽  
C. Y. Ng ◽  
V. J. Kurian

In South East Asia, Malaysia is one of the leading countries in the oil and gas industry. Today, Malaysia has expanded the explorations into the deeper water region. Before the installation of the Malaysia first deepwater platform, the Kikeh Spar, spar platforms can only be found in the Gulf of Mexico. Malaysian offshore regions are subjected to significant water current. From the literature review carried out, it was found that the current would change the behavior of the sea waves. This is contributing significantly to the environmental loading and affect the dynamic responses of the offshore structures. Hence, the study that focused on the effects of the current together with the wave on the structural dynamic response is necessary. In this study, the effect of the current coexisting with the wave on the dynamic responses of a truss spar model was experimentally investigated and quantified. The model tests were performed in the wave tank of the Offshore Laboratory in Universiti Teknologi PETRONAS with a scaling factor of 1:100. Two sets of environmental conditions were considered in the model tests i.e. wave only and wave-current condition. The dynamic responses of the truss spar model subjected to these conditions were measured. In order to quantify the effect of current, the measured results for the condition with and without current were compared among and presented here. From this investigation, it was found that the existence of the current in the water body has increased the truss spar motions, whereby the higher current velocity, give the higher response.


2011 ◽  
Vol 250-253 ◽  
pp. 3822-3826 ◽  
Author(s):  
Xian Mai Chen ◽  
Xia Xin Tao ◽  
Gao Hang Cui ◽  
Fu Tong Wang

The general track spectrum of Chinese main railway lines (ChinaRLS) and the track spectrum of American railway lines (AmericaRLS) are compared in terms of character of frequency domain, statistical property of time domain samples and dynamic performance. That the wavelength range of the ChinaRLS, which is characterized by the three levels according to the class of railway line, is less than AmericaRLS at common wave band of 1~50m is calculated. Simultaneously, the mean square values of two kinds of track spectra are provided at the detrimental wave bands of 5~10m, 10~20m, and so on. The time-histories of ChinaRLS and AmericaRLS are simulated according to the trigonometric method, and the digital statistical nature of simulated time samples is analyzed. With inputting the two kinds of time-histories into the vehicle-railway system, the comparative analysis of the two kinds of dynamic performances for ChinaRLS and AmericaRLS is done in terms of car body acceleration, rate of wheel load reduction, wheel/rail force, and the dynamic responses of track structure. The result shows that ChinaRLS can characterize the feature of the Chinese track irregularity better than AmericaRLS, the track irregularity with the ChinaRLS of 200km/h is superior to the AmericaRLS, and the track irregularity with the ChinaRLS of 160km/h corresponds to with the sixth of AmericaRLS.


2014 ◽  
Vol 1061-1062 ◽  
pp. 809-812
Author(s):  
Hu Ping

In this paper, based on the finite element method and ANSYS software, the dynamic responses of permeable breakwater under wave load response is analyzed and studied. Taking the method of combining modal analysis and power spectrum analysis research on dynamic response of breakwater in the frequency domain and the principal stress and displacement distribution of the structure in the exceedance probability of 0.7%. The results prove that the finite element method of power spectral density analysis can provide effective guidance for the actual engineering.


Author(s):  
Remmelt J. van der Wal ◽  
Gerrit de Boer

Offshore operations in open seas may be seriously affected by the weather. This can lead to a downtime during these operations. The question whether an offshore structure or dredger is able to operate in wind, waves and current is defined as “workability”. In recent decades improvements have been made in the hydrodynamic modelling of offshore structures and dredgers. However, the coupling of these hydrodynamic models with methods to analyse the actual workability for a given offshore operation is less developed. The present paper focuses on techniques to determine the workability (or downtime) in an accurate manner. Two different methods of determining the downtime are described in the paper. The first method is widely used in the industry: prediction of downtime on basis of wave scatter diagrams. The second method is less common but results in a much more reliable downtime estimate: determination of the ‘job duration’ on basis of scenario simulations. The analysis using wave scatter diagrams is simple: the downtime is expressed as a percentage of the time (occurrences) that a certain operation can not be carried out. This method can also be used for a combination of operations however using this approach does not take into account critical events. This can lead to a significant underprediction of the downtime. For the determination of the downtime on basis of scenario simulations long term seastate time records are used. By checking for each subsequent time step which operational mode is applicable and if this mode can be carried out the workability is determined. Past events and weather forecast are taken into account. The two different methods are compared and discussed for a simplified offloading operation from a Catenary Anchor Leg Mooring (CALM) buoy. The differences between the methods will be presented and recommendations for further applications are given.


Sign in / Sign up

Export Citation Format

Share Document