scholarly journals Study on Behaviour of Stud Type Shear Connector in Composite Beam Using ANSYS

2018 ◽  
Vol 7 (3.10) ◽  
pp. 54
Author(s):  
T Subramani ◽  
A Periasamy

Composite plays a vital role in replacing the existing mild steel in reinforcement and exterior truss structure. This study proposed to design shear connector for joining concrete slab and steel section. Shear connectors has analyzed and predict the best connector for a particular composite beam with respect to static load and the amount of steel in the connector as a common aspect. The use of composite structures is increasingly present in civil construction works nowadays. Composite beams, especially, are structures which include substances, a metal phase placed in particular inside the tension region and a concrete phase, positioned in the compression go sectional location, both are related with the aid of steel gadgets called shear connectors. The main features of this connector are to permit the weight for the joint the beam-column, to restriction longitudinal slipping and uplifting on the factors interface the shear forces. Our project paper presents 3D numerical models of steel-concrete composite beams to simulate their structural behaviour, with emphasis on the beam column interface using Simulations software ANSYS 18.1 based on the Finite Element Method. Mostly these type of structures are widely used in the dynamic loading structures like bridges and high rise buildings.  

2014 ◽  
Vol 67 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Gilson Queiroz ◽  
Hermes Carvalho ◽  
Francisco Rodrigues ◽  
Michèle Pfeilo

A shear connector, developed to be applied to a composite beam whose steel profile is a thin-walled box profile, displayed much greater flexibility than the conventional welded shear connector, leading to particular issues in the composite beam behaviour. One of these issues is the role played by friction at the interface between the steel profile and the slab which, under particular circumstances, may be relevant for serviceability limit states and also for ultimate limit states. The Brazilian and American Standards do not yet recognize the friction contribution in the behaviour of composite beams, though they recognize this contribution in composite slabs. This paper presents the experimental tests carried out with and without friction contribution on simple supported composite beams with flexible connectors and the numerical models developed to simulate the behaviour of the tested beams. The experimental tests revealed significant increases in strength and stiffness of the composite beam due to friction contribution and the comparisons between numerical and experimental results displayed good correlations.


2019 ◽  
Vol 9 (1) ◽  
pp. 207 ◽  
Author(s):  
Xinggui Zeng ◽  
Shao-Fei Jiang ◽  
Donghua Zhou

In a steel-concrete composite beam (hereafter referred to as a composite beam), partial interaction between the concrete slab and the steel beam results in an appreciable increase in the beam deflections relative to full interaction behavior. Moreover, the distribution type of the shear connectors has a great impact on the degree of the composite action between the two components of the beam. To reveal the effect of shear connector layout in the performance of composite beams, on the basis of a developed one-dimensional composite beam element validated by the closed-form precision solutions and experimental results, this paper optimizes the layout of shear connectors in composite beams with partial interaction by adopting a stepwise uniform distribution of shear connectors to approximate the triangular distribution of the shear connector density without increasing the total number of shear connectors. Based on a comparison of all the different types of stepped rectangles distribution, this paper finally suggests the 3-stepped rectangles distribution of shear connectors as a reasonable and applicable optimal method.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


1992 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Veldanda ◽  
M. U. Hosain

This paper summarizes the results of tests performed on 48 push-out specimens to investigate the feasibility of using perfobond rib type shear connectors in composite beams with ribbed metal decks placed parallel to the steel beams. The perfobond rib shear connector is a flat steel plate containing a number of holes. The results indicate that perfobond rib connectors can be effectively used in composite beams with ribbed metal decks placed parallel to the steel beams. An appreciable improvement in performance was observed in test specimens when additional reinforcing bars were passed through the perfobond rib holes. Shank shear was the principal mode of failure in specimens with headed studs. In specimens with perfobond rib, failure was triggered by the longitudinal splitting of the concrete slab, followed by the crushing of concrete in front of the perfobond rib. Key words: composite beam, shear connector, perfobond rib, headed stud, push-out test, metal deck.


2019 ◽  
Vol 29 (3) ◽  
pp. 228-240 ◽  
Author(s):  
Sangeetha Palanivelu

Abstract Steel-concrete composite structures are widely used in the current construction of bridges and multi-storey buildings. The effect of shear connectors in a cold-formed steel-composite beam was studied under flexure. The number of channel connectors in the specimen was varied and the same was compared with a specimen without shear connectors. The performance and failure of cold-formed steel-composite beams were then studied. The presence of shear connectors in the tension zone prevents the formation of cracks which are the major cause of failure in a beam subjected to bending. The load-carrying capacity is greater in a composite beam and an increase in the number of channel connectors from one to five increases the load-carrying capacity by 60 % as compared to a specimen without a connector. A composite beam with five connectors is more ductile, with a ductility factor of 14. The Composite beams were also analysed using the finite element software ANSYS and were found to have good agreement with the experimental results.


2018 ◽  
Vol 203 ◽  
pp. 06010
Author(s):  
Nadiah Loqman ◽  
Nor Azizi Safiee ◽  
Nabilah Abu Bakar ◽  
Noor Azline Mohd Nasir

Conventional steel-concrete composite beams have been recognized to exhibit stronger structural characteristics, in terms of strength and stiffness, when compared to pure steel or reinforced concrete beams. However, currently most steel beam is fully attached to the concrete slab; this means that the shear connectors are welded through the steel decking on to the steel beam and cast into concrete slab to fulfill the necessary shear connection. Recently, the deconstruction and reuse of the components almost impossible. In order to achieve a sustainable structural system, precast concrete slabs are attached to a steel beam using bolted shear connectors in prefabricated holes have been introduced as an alternative to the conventional connectors in steel – concrete composite beam system. This paper reviews the structural behavior of composite beam system such as the strength, stiffness, slip behavior, failure mode and sustainability obtained by experiment and numerical studies in order to address the applicability and efficiency of the composite beams having precast concrete slabs and bolted shear connectors.


2015 ◽  
Vol 744-746 ◽  
pp. 274-278
Author(s):  
Li Ping Chen ◽  
Guo Jing He ◽  
Hong Zhi Xiao

The timber-concrete composite (TCC) beam is a new type of structural member, which formed by combing a timber beam and an upper concrete flange using different types of connectors. Compared with the traditional timber beam, the bending and stiffness of the composite beam is proved. In composite structure, the important factor of the structure is the shear connector. So structural efficiency of a TCC highly depends on the stiffness of the interlayer connection. This paper presents a survey on the state-of-the-art of shear connectors for TCC beam research in the past and recent years. And put forward to the subsequent study of shear connectors in TCC beams.


2013 ◽  
Vol 351-352 ◽  
pp. 427-433 ◽  
Author(s):  
S.O. Bamaga ◽  
M.Md. Tahir

Introducing low cost housing is one of the challenges face civil engineers now-days. Using lightweight construction materials i.e. cold formed steel sections is an alternate solution to overcome the challenge. In this study, a lightweight composite beam was introduced. It consists of cold formed steel section and profiled concrete slab. Experimental push tests were conducted to investigate the ductility and strength capacities of new and innovative shear connectors. The shear connectors were easy to form and give advantages to speed up the fabrication process of the proposed composite beam. The shear connectors showed large deformation and strength capacities. It is concluded that the proposed shear connectors could be used for lightweight composite beams.


Author(s):  
Xianghe Dai ◽  
Dennis Lam ◽  
Therese Sheehan ◽  
Jie Yang ◽  
Kan Zhou

Composite beam incorporated steel profiled decking has been extensively used for multi-storey buildings and is now one of the most efficient and economic form of flooring systems. However, the current composite flooring system is not demountable and would require extensive cutting on site during demolition, and the opportunity to reuse the steel components is lost even though these components could be salvaged and recycled. This paper presents the use of high strength bolts as shear connectors in composite construction, the shear behaviour and failure modes were observed and analysed through a series of push-off tests and numerical simulation. The results highlighted the structural behaviour of three different demountable shear connection forms in which continuous slabs or un-continuous slabs were used. Numerical models were validated against experimental observation. Both experimental and numerical results support the high strength bolts used as demountable shear connectors and lead to a better understanding to the behaviour of this form of shear connectors.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Elder Nogueira Da Silva ◽  
Alex Sander Clemente De Souza

RESUMO: O presente trabalho apresenta uma metodologia para análise numérica de vigas mistas de aço e concreto protendidas utilizando o pacote computacional ABAQUS®, que permite modelagens via método dos elementos finitos. A metodologia aborda aspectos relacionados a escolha dos elementos finitos utilizados, geometria das malhas, relações constitutivas dos materiais, condições de acoplamento e vinculação entre os materiais e procedimentos de aplicação dos carregamentos, com o objetivo de simular o comportamento da estrutura. A interação entre laje de concreto e viga de aço foi modelada com conectores e elementos de contato e considerando somente o acoplamento das redes de elementos finitos da laje e da viga. A validação do modelo numérico foi realizada através da correlação entre os resultados numéricos e experimentais disponíveis na literatura. Para ambas as formas de vinculação laje-perfil, o modelo numérico representou de forma satisfatória o comportamento observado experimentalmente. Nos casos em que foram modelados os conectores de cisalhamento as vigas apresentaram menor rigidez e consequentemente melhor correlação entre resultados numéricos e experimentais.ABSTRACT: This paper reports a methodology adopted to represent the behavior of prestressed steel concrete composite beam by finite element models using software ABAQUS®. The methodology presents aspects related to the choice of finite elements types, mesh geometry, constitutive relations of materials, boundary conditions, steel-concrete interaction and sequence of loading.  The interaction between the concrete slab and the steel profile was carried out modeling the shear connectors, using contact elements to modeling the interface and after was carried out using TIE constraint. The validation of the numerical model was carried through the correlation between the numerical and experimental results and it was adequate to simulate the experimentally tested beams for both forms of slab profile bonding, especially for the cases where the shear connectors were modeled, because the beams presented lower stiffness and consequently greater proximity of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document