scholarly journals Dynamic analysis of planetary gear train system with double moduli and pressure angles

2018 ◽  
Vol 211 ◽  
pp. 17003
Author(s):  
Heyun Bao ◽  
Guanghu Jin ◽  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Xiaozhu Zou

The planetary gear transmission with double moduli and pressure angles gearing is proposed for meeting the low weight high reliability requires. A dynamic differential equation of the NGW planetary gear train system with double and pressure angles is established. The 4-Order Runge-Kutta numerical integration method is used to solve the equations from which the result of the dynamic response is got. The dynamic load coefficients are formulated and are compared with those of the normal gear train.The double modulus planetary gear transmission is designed and manufactured. The experiment of operating and vibration are carried out and provides.

Author(s):  
El-Sayed Aziz ◽  
Yizhe Chang ◽  
Sven K. Esche ◽  
Constantin Chassapis

Recently, multi-player game engines have been explored regarding their potential for implementing virtual laboratory environments for engineering and science education. In these developments, the virtual assembly process of the laboratory equipment is a critical step, and a detailed formalized description of how different components of the experimental equipment are to be joined in the assembly process is necessary. This description includes the joint types (lower and upper kinematic pairs) and the associated degrees of freedom, the resulting mobility of the assembly as well as the joint fit requirements. In this paper, a formalized representation of the assembly process that captures the information on the joint kinematics and the components’ degrees of freedom generated when assembling laboratory equipment in a virtual laboratory environment will be discussed. A planetary gear train system will be used as an example to illustrate the proposed method. In particular, the structure of the assembly of a planetary gear train system involves assembly constraints between a group of components (sun, planet and ring gears, shafts, planet carrier assembly, etc.) that generate the desired relationship between the input and output motions. This paper will identify important requirements for modeling different configurations of planetary gear train assemblies within a game-based virtual laboratory environment. These requirements include the positioning and the orienting of the components, the verification of the kinematic joints, the propagation of the mating constraints and the capturing of the joint attributes.


2011 ◽  
Vol 383-390 ◽  
pp. 785-789 ◽  
Author(s):  
Hui Pan ◽  
Xing Cai

Six kinds of torque-splitting and speed-converging metal V-belt IVPST were raised; their global speed ratio and torque ratio of metal V-belt CVT output to metal V-belt IVPST output were derived. Two different torque-splitting and speed-converging metal V-belt IVPSTs were sum up: series and parallel metal V-belt IVPSTs. In series metal V-belt IVPST, speed ratio changing rate and torque ratio were related to gear ratio of planetary gear train and fixed gear transmission, but in parallel metal V-belt IVPST, that were only related to gear ratio of planetary gear train.


2019 ◽  
Vol 9 (24) ◽  
pp. 5501 ◽  
Author(s):  
Jungang Wang ◽  
Shinan Yang ◽  
Yande Liu ◽  
Ruina Mo

Load-sharing behavior is very important for power-split gearing systems. Taking the multistage planetary gear train transmission of an Million Watt (MW) wind generator as the investigation object, and based on the gear transmission system of a wind generator in a complex and changing load environment, a random wind model of a wind farm is built by using the two-parameter Weibull distribution. According to the realistic working region of the wind generator, the random wind speed is changed into time-varying input speed of the wind generator gear box. Considering the internal excitation, such as mesh stiffness, mesh damping of gear pairs and the meshing error, a dynamic model for a multistage planetary gear transmission system is built by using the lumped parameter method. The load-sharing coefficients are obtained for each planet gear pair in the same meshing period of the transmission system that is under the interaction of time-varying input speed and internal excitation. It is shown that the degree of load-sharing coefficient fluctuation for each planet gear pair of the first- and second-stage planetary gear train is significantly affected by time-varying input speed. The research results can lay a theoretical foundation for optimization and reliability of planetary gear transmission systems of wind generators.


2011 ◽  
Vol 308-310 ◽  
pp. 307-310
Author(s):  
Xiao Mei You ◽  
Lei Meng ◽  
Xing Guo Ma ◽  
Bang Chun Wen

Based on the multi-body dynamics theory and visualization technology, a planetary gear train system is studied in RecurDyn. The multi-body dynamics model of the 2K-H planetary gear train system is built to do the visual analysis on dynamic characteristic of the planetary gear system severally in the ideal steady-state condition and the random-load condition, than the real-time dynamic contact stress and some other meaningful results of the key components are gained. Compared the related simulation results with that of the theoretical analysis, it is known that two kinds of results are consistent and the simulation analysis on the planetary gear train system is correct and accuracy. From the research above, the new idea and analytical tool are provided for the traditional, static, "redundancy" design method of the gear system, and also the effective technical mean is provided in conceptual design of complex mechanical products to predict the performance, then to reduce the "birth defects" in design stage and also an effective and efficient technical means for engineering applications is offered for optimal design and developing new product on gear train system.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Ye Ding ◽  
Jinbo Niu ◽  
LiMin Zhu ◽  
Han Ding

A semi-analytical method is presented in this paper for stability analysis of milling with a variable spindle speed (VSS), periodically modulated around a nominal spindle speed. Taking the regenerative effect into account, the dynamics of the VSS milling is governed by a delay-differential equation (DDE) with time-periodic coefficients and a time-varying delay. By reformulating the original DDE in an integral-equation form, one time period is divided into a series of subintervals. With the aid of numerical integrations, the transition matrix over one time period is then obtained to determine the milling stability by using Floquet theory. On this basis, the stability lobes consisting of critical machining parameters can be calculated. Unlike the constant spindle speed (CSS) milling, the time delay for the VSS is determined by an integral transcendental equation which is accurately calculated with an ordinary differential equation (ODE) based method instead of the formerly adopted approximation expressions. The proposed numerical integration method is verified with high computational efficiency and accuracy by comparing with other methods via a two-degree-of-freedom milling example. With the proposed method, this paper details the influence of modulation parameters on stability diagrams for the VSS milling.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


2014 ◽  
Vol 1030-1032 ◽  
pp. 223-227
Author(s):  
Lin Fan ◽  
Song Rong Qian ◽  
Teng Fei Ma

In order to analysis the force situation of the material which is discontinuity,we can used the new theory called peridynamics to slove it.Peridynamics theory is a new method of molecular dynamics that develops very quickly.Peridynamics theory used the volume integral equation to constructed the model,used the volume integral equation to calculated the PD force in the horizon.So It doesn’t need to assumed the material’s continuity which must assumed that use partial differential equation to formulates the equation of motion. Destruction and the expend of crack which have been included in the peridynamics’ equation of motion.Do not need other additional conditions.In this paper,we introduce the peridynamics theory modeling method and introduce the relations between peridynamics and classic theory of mechanics.We also introduce the numerical integration method of peridynamics.Finally implementation the numerical integration in prototype microelastic brittle material.Through these work to show the advantage of peridynamics to analysis the force situation of the material.


Sign in / Sign up

Export Citation Format

Share Document