scholarly journals Design controler of the quasi-time optimization approach for stabilizing and trajectory tracking of inverted pendulum

2018 ◽  
Vol 226 ◽  
pp. 02007 ◽  
Author(s):  
Nguyen Xuan Chiem ◽  
Hai Nguyen Phan

This article describes the method of stabilizing and tracking the trajectory of the inverted pendulum with the quasi-time optimization approach. The controller proposed in this paper is not only to stabilize the inverted pendulum in a vertical position but also to cause the inverted pendulum to follow a predetermined reference signal even when there is an interference effect. The focus of this project is the design of a quasi-time control law based on the quasi-time optimization approach and Lyapunov stability theory. The simulation and experimental results suggest that the proposed controller controls the inverted pendulum balance and cart position stability which are better than the LQR method even when there is an external disturbance effect.

2019 ◽  
Vol 25 ◽  
pp. 69 ◽  
Author(s):  
Hua-Cheng Zhou

In this paper, we solve the output tracking and disturbance rejection problem for a system described by a one-dimensional anti-stable wave equation, with reference and disturbance signals that belong to W1,∞[0, ∞) and L∞[0, ∞), respectively. Generally, these signals cannot be generated from an exosystem. We explore an approach based on proportional control. It is shown that a proportional gain controller can achieve exponentially the output tracking while rejecting disturbance. Our method consists of three steps: first, we convert the original system without disturbance into two transport equations with an ordinary differential equation by using Riemann variables, then we propose a proportional control law by making use of the properties of transport systems and time delay systems. Second, based on our recent result on disturbance estimator, we apply the estimation/cancellion strategy to cancel to the external disturbance and to track the reference asymptotically. Third, we design a controller using a state observer. Since disturbance does not appear in the observer explicitly (the disturbance is exactly compensated), the controlled output signal is exponentially tracking the reference signal. As a byproduct, we obtain a new output feedback stabilizing control law by which the resulting closed-loop system is exponentially stable using only two displacement output signals.


2020 ◽  
Vol 10 (3) ◽  
pp. 25
Author(s):  
Ali Aalsaud ◽  
Fei Xia ◽  
Ashur Rafiev ◽  
Rishad Shafik ◽  
Alexander Romanovsky ◽  
...  

Contemporary embedded systems may execute multiple applications, potentially concurrently on heterogeneous platforms, with different system workloads (CPU- or memory-intensive or both) leading to different power signatures. This makes finding the most energy-efficient system configuration for each type of workload scenario extremely challenging. This paper proposes a novel run-time optimization approach aiming for maximum power normalized performance under such circumstances. Based on experimenting with PARSEC applications on an Odroid XU-3 and Intel Core i7 platforms, we model power normalized performance (in terms of instruction per second (IPS)/Watt) through multivariate linear regression (MLR). We derive run-time control methods to exploit the models in different ways, trading off optimization results with control overheads. We demonstrate low-cost and low-complexity run-time algorithms that continuously adapt system configuration to improve the IPS/Watt by up to 139% compared to existing approaches.


2013 ◽  
Vol 464 ◽  
pp. 279-284 ◽  
Author(s):  
Aydın Özbey ◽  
Erol Uzal ◽  
Hüseyin Yildiz

Stabilization at the top vertical position of an inverted pendulum on a cart, while bringing the cart to a desired position, by applying a force to the cart is considered. This is an underactuated mechanical system for which the main nonlinear control scheme, feedback linearization, fails. A single control law producing the force on the cart using cart velocity, and position and velocity of the pendulum is developed and shown, by numerical experiments, to asymptotically stabilize the pendulum at the top position while bringing the cart to its origin, although no attemp is made for a proof of global stability.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chao Ding ◽  
Hong Yao ◽  
Jun Du ◽  
Xing-zhao Peng ◽  
Zhe Wang

In order to investigate the effects of community structure on synchronization, a pinning control strategy is researched in a class of complex networks with community structure in this paper. A feedback control law is designed based on the network community structure information. The stability condition is given and proved by using Lyapunov stability theory. Our research shows that as to community structure networks, there being a threshold hT≈5, when coupling strength bellows this threshold, the stronger coupling strength corresponds to higher synchronizability; vice versa, the stronger coupling strength brings lower synchronizability. In addition the synchronizability of overlapping and nonoverlapping community structure networks was simulated and analyzed; while the nodes were controlled randomly and intensively, the results show that intensive control strategy is better than the random one. The network will reach synchronization easily when the node with largest betweenness was controlled. Furthermore, four difference networks’ synchronizability, such as Barabási-Albert network, Watts-Strogatz network, Erdös-Rényi network, and community structure network, are simulated; the research shows that the community structure network is more easily synchronized under the same control strength.


Author(s):  
Kanya Rattanamongkhonkun ◽  
Radom Pongvuthithum ◽  
Chulin Likasiri

Abstract This paper addresses a finite-time regulation problem for time-varying nonlinear systems in p-normal form. This class of time-varying systems includes a well-known lower-triangular system and a chain of power integrator systems as special cases. No growth condition on time-varying uncertainties is imposed. The control law can guarantee that all closed-loop trajectories are bounded and well defined. Furthermore, all states converge to zero in finite time.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


Author(s):  
Xindong Si ◽  
Hongli Yang

AbstractThis paper deals with the Constrained Regulation Problem (CRP) for linear continuous-times fractional-order systems. The aim is to find the existence conditions of linear feedback control law for CRP of fractional-order systems and to provide numerical solving method by means of positively invariant sets. Under two different types of the initial state constraints, the algebraic condition guaranteeing the existence of linear feedback control law for CRP is obtained. Necessary and sufficient conditions for the polyhedral set to be a positive invariant set of linear fractional-order systems are presented, an optimization model and corresponding algorithm for solving linear state feedback control law are proposed based on the positive invariance of polyhedral sets. The proposed model and algorithm transform the fractional-order CRP problem into a linear programming problem which can readily solved from the computational point of view. Numerical examples illustrate the proposed results and show the effectiveness of our approach.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


Sign in / Sign up

Export Citation Format

Share Document