scholarly journals Research of interaction of the “train – bridge” system with bridge deck resonant vibrations

2018 ◽  
Vol 239 ◽  
pp. 05002 ◽  
Author(s):  
Leonid Diachenko ◽  
Andrey Benin ◽  
Anastasiia Diachenko

When designing bridges on high-speed railways, special attention should be paid to ensuring the safety of train traffic and the comfort of passengers. On high-speed railways, the proportion of the length of bridge structures in the composition of the entire route is much larger than on conventional railways, which makes the present study relevant. In this paper based on numerical simulation, the results of the study of the motion of a high-speed train along bridge structures in the resonance mode of vibrations are presented. In this formulation, special attention was paid to the control of dynamic phenomena at the level of the “wheel-rail” contact. The dynamics of loose parts of the train car determines the magnitude of the contact force, which in turn characterizes the possible detachable movement of the wheel, which is inadmissible for the safety of the train. Analysis of the obtained results, using the example of a 50 m long simple span structure developed for the Moscow-Kazan high-speed railway, allows us to conclude that the resonant nature of the vibrations of simple beam is not a critical phenomenon.

2010 ◽  
Vol 163-167 ◽  
pp. 122-126 ◽  
Author(s):  
Ru Deng Luo ◽  
Mei Xin Ye ◽  
Ye Zhi Zhang

Orthotropic monolithic steel bridge deck system stiffened by U rib is very fit for high-speed railway steel bridges because of its excellent mechanical behaviors. Thickness of flange is a very important parameter of U rib and has influence on mechanical behaviors of orthotropic monolithic steel bridge deck system. Based on the engineering practice of Anqing Yangtze River Railway Grand Bridge, the kind and the extents of influences of thickness of flange of U rib on mechanical behaviors of orthotropic monolithic steel bridge deck system are studied with finite element analysis. The results show that thickness of flange of U rib has relative large positive influences on rigidity, strength and stability of orthotropic monolithic steel bridge deck system. 14~18mm is the appropriate range of thickness of flange of U rib for high-speed railway steel bridges.


2020 ◽  
Vol 165 ◽  
pp. 04075
Author(s):  
Qizhang Li ◽  
Yongliang Xie

Underground high-speed railway station is becoming more and more popular in recent years, due to its advantage in relieving the tense situation of urban construction land. HVAC (Heating, Ventilation and Air Conditioning) system of underground railway station consumes large energy, therefore it is necessary to find a way to decrease the energy consumption in stations. Reasonable ventilation and air organization are the basis of energy-saving design of environment control system in stations. The energy consumption could be reduced greatly by utilizing the piston wind properly. In the present work, airflow characteristics in the station are investigated when high-speed train is passing through the underground railway station with CCM+ software. Results show that piston wind has different effects on airflow in the platform when the high-speed train is running. However, the air velocity in the platform is always lower than 5 m/s. In order to analyse the effect of piston wind on the airflow in the platform in more detail, the velocities and temperatures at waiting line are extracted. The air velocity near two ends of platform is larger and the similar results could also be observed for temperatures.


2011 ◽  
Vol 368-373 ◽  
pp. 2575-2580 ◽  
Author(s):  
Long Long Fu ◽  
Quan Mei Gong ◽  
Yang Wang

To investigate the dynamic transfer characteristics of low geosynthetic-reinforced embankments supported by CFG piles under high-speed train load, a numerical study has been conducted through dynamic finite element method on basis of the dynamic field test on a cross-section of Beijing-Shanghai high-speed railway. The comparative analysis on results of numerical study and field test indicated the distribution characteristics of vertical dynamic stress induced by high-speed train load in subgrade soil under railway line. The numerical results also suggested a high stress area in subgrade where vertical dynamic stress is over 1kPa. Conclusions of this work can provide reference for both design and estimation of long-term settlement of low geosynthetic-reinforced embankments supported by CFG piles for high-speed railway.


2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


2013 ◽  
Vol 742 ◽  
pp. 13-18
Author(s):  
Qian Su ◽  
Wei Jiang ◽  
Kai Jiang ◽  
Yu Jie Li ◽  
Ling Ling Yang

The criterion for residual deformation of Substructure of ballasteless track on railway passenger dedicated line is extremely strict in order to satisfy the safety and comfort requirements of the high-speed train during operation period, urgent need to strengthen the ballastless track lines settlement deformation observation, prediction and assessment technology. Based on Chengdu-Guanxian line, this paper puts forward observation programs of subgrade settlement combined with the characteristics of Subgrade Settlement through the analysis of the influence factors of subgrade settlement deformation and key consideration about the factors of nighttime observation precision. It shows that the monitoring and assessment technology could meet the requirements through the analysis of field data, it can be guidance of railway management departments to make maintenance plan. Some advices provide reference for the monitoring and assessment of high-speed railway subgrade settlement during operation period.


2021 ◽  
Vol 17 (1) ◽  
pp. 31-46
Author(s):  
Darynaufal Mulyaman ◽  
Kanya Damarçanti ◽  
Aldrin Rocky Sampeliling

This study undermines a recent development of joint-cooperation between Indonesia and China regarding high-speed railway and its supporting constructions. New dedicated railway, train technology, and Transit Oriented Development (TOD) are part of the initial project, which planned concurrently along the projected area. All of these new railway and TODs are new and distant from already built residences and business centers. These study breakdowns how the Indonesia-China High Speed Train project were initiated and explaining vital factors that surrounds it. Reflecting on how Korea and France dealt with KTX (Korean Train Express) project, the TODs, railways, and train technology compare to Indonesia-China High Speed Train project, Indonesia-China project appears not sustainable and driven by other political and economical will.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Chang ◽  
Liang Ling ◽  
Zhaoling Han ◽  
Kaiyun Wang ◽  
Wanming Zhai

Wheel hollow wear is a common form of wheel-surface damage in high-speed trains, which is of great concern and a potential threat to the service performance and safety of the high-speed railway system. At the same time, rail corridors in high-speed railways are extensively straightened through the addition of bridges. However, only few studies paid attention to the influence of wheel-profile wear on the train-track-bridge dynamic interaction. This paper reports a study of the high-speed train-track-bridge dynamic interactions under new and hollow worn wheel profiles. A nonlinear rigid-flexible coupled model of a Chinese high-speed train travelling on nonballasted tracks supported by a long-span continuous girder bridge is formulated. This modelling is based on the train-track-bridge interaction theory, the wheel-rail nonelliptical multipoint contact theory, and the modified Craig–Bampton modal synthesis method. The effects of wheel-rail nonlinearity caused by the wheel hollow wear are fully considered. The proposed model is applied to predict the vertical and lateral dynamic responses of the high-speed train-track-bridge system under new and worn wheel profiles, in which a high-speed train passing through a long-span continuous girder bridge at a speed of 350 km/h is considered. The numerical results show that the wheel hollow wear changes the geometric parameters of the wheel-rail contact and then deteriorates the train-track-bridge interactions. The worn wheels can increase the vibration response of the high-speed railway bridges.


2018 ◽  
Vol 77 (6) ◽  
pp. 357-363 ◽  
Author(s):  
V. Yu. Polyakov ◽  
Dang Ngoc Thanh

Abstract. High-speed lines are one of the safest modes of transport, despite the special conditions for moving the wheel along the rail. The urgent task is to ensure the sustainable motion of the wheel along the rail over the bridges in high-speed traffic. A feature of high-speed lines (HS lines) is the practical achievement of critical speeds that cause resonance of bridge deck structures. Cases of rolling stock derailments on high-speed lines are not frequent. The article provides information about rolling stock derailments on high-speed rail and its consequences. Standards for the stability of wheels on rails in various countries with high-speed rail were considered. On the bridges of high-speed lines there are not many elements of the track that are strong dampers — the roadbed, its base and ballast. Due to the lack of damping elements, the damping properties of the bridge deck are of great importance. When driving over the bridge with critical speeds causing near-resonance oscillations, the force in the wheel—rail contact may drop to zero with the risk of derailment. Insufficient damping poses a threat to traffic safety. Thus, one of the most important dynamic parameters — damping — is a problem for a ballastless track on high-speed railway bridges. Considerations are given for the correct determination of stiffness associated with damping and affecting the interaction of rolling stock and bridge deck. It is shown that in case of insufficient damping at the fastening points on the bridges, the risk of derailment increases due to a fall of the vertical force below the permissible limit at the wheel—rail contact. Results of computer performed experiments are presented, confirming that it is precisely the significant oscillations of the bridge deck structures that are a safety hazard, since when the first car passes, the force at the contact of the wheel and rail for the first wheelset is safe. Requirements for damping parameters are given, ensuring reliable contact of the wheel and rail with significant fluctuations in bridge deck structures on high-speed lines. Results are presented, showing the dependence of required damping on the stiffness of intermediate rail fasteners.


Géotechnique ◽  
2021 ◽  
pp. 1-49
Author(s):  
Xuecheng Bian ◽  
Zhangbo Wan ◽  
Chuang Zhao ◽  
Yujun Cui ◽  
Yunmin Chen

Mud pumping intendedly avoided in the design of a ballastless high-speed railway still occurred and induced extraordinary track vibrations. In this study, in situ investigations and laboratory tests were performed to disclose the initiation and development of mud pumping detected in the field. The in situ investigations indicated that mud pumping principally appeared at both ends of the concrete base up to a maximum distance of 2 m. Precipitation, instead of groundwater, was found to be the water source triggering mud pumping, which infiltrated into the graded gravel roadbed through the detachments of the ends of the overlying concrete bases due to the whipping effect. Once mud pumping occurred, the vibrations of concrete bases were aggravated and caused severe track settlements under train loads. The results of laboratory tests indicated that the infiltrated rainwater was retained in the roadbed above the less permeable subgrade, and the roadbed contained an unstable particle skeleton with excessive plastic fine particles, both of which provided favorable conditions to form mud pumping under dense high-speed train loads. Soil particles less than 7.1 mm in diameter migrated during mud pumping, which first accumulated at the lower roadbed, then gradually migrated to the upper roadbed actuated by generated hydraulic gradient, and finally pumped out through the detachments around the expansion gaps, thereby resulting in large amounts of voids in the roadbed and a vicious cycle if not timely treated. These features of mud pumping in ballastless tracks differ from those of ballasted tracks and will benefit the development of remediation measures and improvement of slab track designs.


2013 ◽  
Vol 779-780 ◽  
pp. 731-738 ◽  
Author(s):  
Ke Xin Zhang ◽  
Jian Wei Yao ◽  
Ze Ping Zhao

The principal aim of this paper is to determine the reasonable design parameters of high-speed railway vibration attenuation. The orthogonal test method is used to design the test of ground vibration induced by high-speed train. Four main factors that impact the maximum ground vertical vibration level are selected, and different values are given to each factor, so 8 groups of combinations can be obtained by using orthogonal test technique. Each group test data of the maximum ground vertical vibration level can be obtained by conducting vehicle testing on-track. In this paper, the primary and secondary factors that impact the maximum ground vertical vibration level are determined by range analysis. Moreover, the neural network theory is used to establish a model of the ground vertical vibration level, and this model can be trained and verified by the test data. The impact factors can be predicted by the method of combining orthogonal test and neural network concerning the specified vibration limit, and the value of maximum ground vertical vibration level with the predicted factors meets the requirement of accuracy. The conclusions provide a valuable reference to the vibration attenuation design of the high-speed railway.


Sign in / Sign up

Export Citation Format

Share Document