scholarly journals An analysis of the innovative exhaust air energy recovery heat exchanger

2018 ◽  
Vol 240 ◽  
pp. 02003 ◽  
Author(s):  
Marek Borowski ◽  
Marek Jaszczur ◽  
Daniel Satoła ◽  
Sławosz Kleszcz ◽  
Michał Karch

Heating, ventilation and air conditioning systems are responsible for a nearly 50% of total energy consumption in operated buildings. One of the most important parts of the ventilation system is an air handling unit with a heat exchanger for energy recovery which is responsible for effective and efficient energy recovery from exhaust air. Typically heat exchangers are characterised by the producers by heat and humidity recovery efficiency up to 90% and 75% respectively. But these very high values are usually evaluated under laboratory conditions without taking into account a dynamic change of outdoor and indoor air conditions significantly affecting the recovery efficiency. In this paper, results of thermal, humidity and enthalpy recover efficiency of innovative energy recovery exchanger have been presented. The analysed system allows adjustment of the humidity recovery especially useful in the winter period and forefends energy use for an anti-froze system of energy exchanger. Presented result show that analysed innovative system can achieve the value of thermal efficiency recovery higher than 90% and efficiency of humidity recovery about 80%. This is possible because the analysed system is able to work without the use of any primary source energy or other anti-freeze systems. Presented in this research unique solution is able to work without external anti-freeze systems even in extremely adverse outdoor air conditions such as minus 20°C and humidity 100% RH.

2015 ◽  
Vol 8 (2) ◽  
pp. 119-141
Author(s):  
Z. Deng ◽  
S. Mol ◽  
J. P. van der Hoek

Abstract. The heating of drinking water in households contributes for a significant amount to the emission of greenhouse gases. As a water utility aiming to operate climate neutral by 2020, Waternet needs to reduce its CO2 emission by 53 kton yr−1. To contribute to this ambition, a pilot project was carried out in Uilenstede, Amstelveen, the Netherlands, to recover the shower heat energy with a shower heat exchanger from Dutch Solar Systems. An experimental set up was built in the Waternet laboratory to compare field conditions and lab conditions. The energy recovery efficiency observed in the lab was 61–64 % under winter conditions and 58–62 % under summer conditions, while the energy recovery efficiency observed in Uilenstede was 57 % in December 2014. Based on the observations, 4 % of the total energy consumption of households in Amsterdam (electricity and gas) can be recovered with a shower heat exchanger installed in all households in Amsterdam, which also means a 54 kton yr−1 CO2 emission reduction.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1175-1185 ◽  
Author(s):  
Marek Jaszczur ◽  
Marek Borowski ◽  
Daniel Satola ◽  
Slawosz Kleszcz ◽  
Michal Karch

In this work, thermal, humidity and enthalpy recover efficiency of innovative energy recovery exchanger is presented. The system under analysis allows adjustment of the humidity recovery especially useful in the winter period and forefend energy use for an anti-froze system of energy exchanger. It is shown that the presented method can achieve the real value for humidity and thermal efficiency above 80% and 90%, respectively. Such high efficiency was possible to obtain because the proposed system does not require energy consuming anti-freeze systems. The presented system is able to work even in extremely adverse outdoor air conditions (-20?C and humidity 100%).


2016 ◽  
Vol 9 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Z. Deng ◽  
S. Mol ◽  
J. P. van der Hoek

Abstract. The heating of drinking water in households contributes significantly to the emission of greenhouse gases. As a water utility aiming to operate at a climate neutral level by 2020, Waternet needs to reduce its CO2 emission by 53 kton yr−1. To contribute to this ambition, a pilot project was carried out in Uilenstede, Amstelveen, the Netherlands, to recover the shower heat energy with a shower heat exchanger from Dutch Solar Systems. An experimental setup was built in the Waternet laboratory to evaluate the claimed efficiencies. The energy recovery efficiency observed in the lab was 61–64 % under winter conditions and 57–62 % under summer conditions, while the energy recovery efficiency observed in Uilenstede was 57 % in December 2014. Based on the observations, 4 % of the total energy consumption of households in Amsterdam (electricity and gas) can be recovered with a shower heat exchanger installed in all households in Amsterdam, which also means a 54 kton year−1 CO2 emission reduction can be achieved.


Author(s):  
Sviatoslav S. Makarov ◽  

In the present study, the relevance of microclimate considerations in the residential premises of high-rise buildings is considered. The application of a natural exhaust ventilation system without forced air removal leads to a deterioration in the quality of the indoor air environment, including suboptimal temperature and humidity conditions, an increase in CO2 and dust concentration, as well as the development of pathogenic microorganisms. A transition from a natural ventilation system to one using air recuperative heat exchangers to reuse recyclable heat is proposed. In conditions of low winter temperatures, the prob-lem of freezing in plate heat exchangers leads to a decrease in their energy efficiency. The main content of the study for the operating air supply and exhaust unit with a plate recuperator involves an analysis of methods for preventing freezing and a comparative calculation of energy costs. Three options for pre-venting freezing are considered: the use of an electric air heater prior to the recuperator for heating air to -14 ºC (the freezing condition for this heat exchanger); the use of a bypass to defrost the heat exchanger; the use of a heat pump to transfer heat energy from the exhaust to the supply air. In the developed ex-perimental model with a heat pump, Freon R410A is used as a heat carrier. The calculated data indicate the total energy consumption at -36 ºC to comprise 20.4, 21.3 and 13.5 kW when using an electric air heater, a recuperator with a bypass and a heat pump, respectively. Additionally, the dependences of the change in relative humidity on temperature are derived. Summarising the obtained results, it is possible to use a heat pump for rationalising thermal and electric energy spent on building heating and maintain-ing the indoor microclimate.


2019 ◽  
Vol 111 ◽  
pp. 03074
Author(s):  
Wei Liu ◽  
Zhen Yu ◽  
Jianlin Wu ◽  
Huai Li ◽  
Caifeng Gao ◽  
...  

Building air tightness increased quickly in recent years as nearly zero energy buildings concept gradually drawn more attentions from the industry. Ventilation system plays an important role for the indoor air quality control in residential buildings with good air tightness. The energy consumption of the ventilation system is a significant part of the overall energy consumption of low energy residential building. The influence of the building air tightness on the energy consumption of ventilation system was not addressed sufficiently in previous studies. This paper analyses the quantitative relations between building air tightness, energy recovery efficiency and ventilation system control strategy. A mathematical model of the heating and cooling energy consumption in residential buildings is proposed, which takes building air tightness, energy recovery efficiency and control strategy of ventilation system as major input parameters. Equivalent COP of ventilation energy recovery system is proposed as an energy efficiency index of the ventilation system. It can be used as a criterion to decide the optimal design parameters of nearly zero residential buildings in different climate conditions.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
Aida Mérida García ◽  
Juan Antonio Rodríguez Díaz ◽  
Jorge García Morillo ◽  
Aonghus McNabola

The use of micro-hydropower (MHP) for energy recovery in water distribution networks is becoming increasingly widespread. The incorporation of this technology, which offers low-cost solutions, allows for the reduction of greenhouse gas emissions linked to energy consumption. In this work, the MHP energy recovery potential in Spain from all available wastewater discharges, both municipal and private industrial, was assessed, based on discharge licenses. From a total of 16,778 licenses, less than 1% of the sites presented an MHP potential higher than 2 kW, with a total power potential between 3.31 and 3.54 MW. This total was distributed between industry, fish farms and municipal wastewater treatment plants following the proportion 51–54%, 14–13% and 35–33%, respectively. The total energy production estimated reached 29 GWh∙year−1, from which 80% corresponded to sites with power potential over 15 kW. Energy-related industries, not included in previous investigations, amounted to 45% of the total energy potential for Spain, a finding which could greatly influence MHP potential estimates across the world. The estimated energy production represented a potential CO2 emission savings of around 11 thousand tonnes, with a corresponding reduction between M€ 2.11 and M€ 4.24 in the total energy consumption in the country.


2021 ◽  
Vol 23 ◽  
pp. 42-64
Author(s):  
Boris Basok ◽  
Ihor Bozhko ◽  
Maryna Novitska ◽  
Aleksandr Nedbailo ◽  
Myroslav Tkachenko

This article is devoted to the analysis of the heat engineering characteristics of the operation of an Earth-to-Air Heat Exchanger, EAHE, with a circular cross-sectional shape, which is a component of the geothermal ventilation system. The authors analyzed literature sources devoted to the research of heat exchangers of the soil-air type of various designs and for working conditions in various soils. Much attention is paid to the issues of modeling the operation of such heat exchangers and the distinctive features of each of these models. Also important are the results of experimental studies carried out on our own experimental bench and with the help of which the numerical model was validated. The results of these studies are the basis for the development of a method for determining the optimal diameter of an EAHE under operating conditions for soil in Kyiv, Ukraine.


2016 ◽  
Vol 26 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Changsheng Cao ◽  
Jun Gao ◽  
Yumei Hou ◽  
Jie Chen

This paper investigates the emission characteristic of a rubber vulcanization process in a workshop and tries to formulate a ventilation strategy for the rubber vulcanization production process with a lower exhaust rate. Measurements were performed to derive detailed source emission characteristic of rubber vulcanization process in a rubber workshop. The measurement results show that the primary source emission process was concentrated within 600 s of a vulcanization process, the corresponding cumulative emission percentage reached up to 95%. Based on random pollutant releasing from rubber vulcanization process, a single local exhaust hood was applied for a curing machine, the corresponding exhaust rate of 4000 m3/h was proven to be reliable for capturing rubber fume by the experimental and numerical methods. The corresponding cumulative capture efficiency of the single local exhaust hood was 92.1% at 600 s. A new ventilation system equipped with single local exhaust hood was further designed for the rubber vulcanization production process line, and the total exhaust rate of this system was only a quarter of the original one used in a large exhaust hood system. These findings have illustrated that the new ventilation system equipped with single local exhaust hood could largely reduce the exhaust rate in a rubber vulcanization workshop.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Sign in / Sign up

Export Citation Format

Share Document