scholarly journals F100-PW-229 Engine Fault Detection Based on Real Time Data

2019 ◽  
Vol 304 ◽  
pp. 03006
Author(s):  
Vasileios Kolios ◽  
Ioannis Templalexis ◽  
Ioannis Lionis ◽  
Emmanouil Antonogiannakis ◽  
Petros Kotsiopoulos

Gas turbine engines exhibit very high maintenance costs. Moreover, in the case of aero applications an in-flight engine incidence, shall, by all means, be avoided, a condition that drives total maintenance costs even higher. A measure in favor of balancing these costs is to monitor continuously the variation of engine performance data recorded during flight, establish methods to deduce useful information regarding the engine “health” status and, as a result, take appropriate actions to maintain a good engine operating condition. The current work presents such a method tailored on the “F100-PW-229” engine that is operated by the ellenic Air Force as the propulsion system of the “F-16 block 52M” aircraft [3]. CEDATS and MS Excel were the computational tools used for the current engine performance study. CEDATS is a software developed for the engine users. It provides basic data trend monitoring functions and engine fault warnings. It is well known that there is always space for improvement for such health monitoring tools since there are cases where engine operating faults are not captured. Within the frame of the current work, a data post – processing method on the engine performance data time series was applied using MS Excel, in order to raise early warnings of an uncaptured compressor operating fault.

Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


Author(s):  
Jeffrey S. Patterson ◽  
Soren K. Spring

The Landing Craft Air Cushion (LCAC) gas turbine engines operate in an extremely harsh environment and are exposed to excessive amounts of foreign contaminants. The present method of crank washing is effective when properly performed, but is labor intensive and increases craft downtime. Naval Ship Systems Engineering Station (NAVSSES) designed and installed a prototype on-line detergent wash system which reduced maintenance and craft downtime. Initial test results indicated that the system reduced engine performance degradation and corrosion.


Author(s):  
M. A. Monroe ◽  
A. H. Epstein ◽  
H. Kumakura ◽  
K. Isomura

The performance of a regenerated gas turbine generator in the 3–5 kW power range has been analyzed to understand why its measured efficiency was on the order of 6% rather than the 20% suggested by consideration of its components’ efficiencies as measured on rigs. This research suggests that this discrepancy can be primarily attributed to heat and fluid leaks not normally considered in the analysis of large gas turbine engines because they are not as important at large scale. In particular, fluid leaks among the components and heat leakage from the hot section into the compressor flow path contributed the largest debits to the engine performance. Such factors can become more important as the engine size is reduced. Other non-ideal effects reducing engine performance include temperature flow distortion at the entrance to both the compressor and turbine. A cycle calculation including all of the above effects matched measured engine data. It suggests that relatively simple changes such as thermal isolation and leak sealing can increase both power output and efficiency of this engine, over 225% in the latter case. The validity of this analysis was demonstrated on an engine in which partial thermal isolation and improved sealing resulted in a more than 40% increase in engine output power.


Author(s):  
Giovanni Torella

The influence of air system an engine performance and behaviour is considered. A method based on the polytropic efficiency concept has been developed in order to calculate the thermodynamic characteristics of air bleed. This method has been included in the “Design Point” and “Off Design” codes of different configuration engines. The paper shows the wide applications of the programs for several calculations. Moreover the results of the faults of air system are shown by both diagnostic and fault simulation computer programs.


2019 ◽  
pp. 39-44
Author(s):  
Stanislav Fábry ◽  
Miroslav Spodniak ◽  
Peter Gašparovič ◽  
Peter Koščák

The paper deals with testing of aircraft gas turbine engines. The main goal of the research is to propose and design testing sequence for a new or rebuilt engine. All factors and circumstances are described, including surroundings of the engine under test. Prerequisite knowledge is introduced, including the theory of testing, description of test beds, the methods of measurement of engine parameters and special factors that affect engine performance. Some examples of real testing facilities are mentioned. The result of the work is a proposal of test cycle, that can be modified according to engine purpose and specification.


Author(s):  
G. Torella

The possibility of the use of scaling factors in the calculations and in the simulation of gas turbine engines have been considered. Application of this technique to the simulation of trend analysis, the evaluation of the component maps shifting during the operational life of the engine and the calculation of matrices of influence have been presented. Moreover, some problems related to the use of scaling factors have been studied and their effects on the engine performance have been presented.


Author(s):  
Jason Cromarty ◽  
Sylvester Abanteriba

An experimental and theoretical investigation was undertaken to identify and evaluate the key technical issues surrounding the ‘drop-in’ utilisation of alternative bio-fuels in aviation gas-turbine propulsion systems. Region-suitable biofuels were identified and suitability evaluated based on the following three criteria: ‘drop-in’ capability, environmental and economic sustainability and industrialisation prospects. Bio-fuel engine performance will be evaluated based on the specific fuel consumption, specific thrust, nature and quantity of emissions through theoretical modelling. This paper outlines a variety of different bio-fuel type options that were investigated. By using engineering and scientific methodology the fuels were evaluated to verify their suitability for gas-turbine aviation use. The eventual bio-fuel selected for further evaluation was a locally produced mustard seed oil derivative bio-fuel which was blended at various blend ratios with standard Jet A-1 turbine fuel. Verification testing processes for future investigation are detailed. In addition to engine performance evaluation endeavours, this paper also seeks to address and offer recommendations in the areas of bio-fuel production, transport, storage, certification and emissions.


Author(s):  
Grant O. Musgrove ◽  
Michael D. Barringer ◽  
Karen A. Thole ◽  
Eric Grover ◽  
Joseph Barker

The extreme temperatures in a jet engine require the use of thermal barrier coatings and internal cooling channels to keep the components in the turbine section below their melting temperature. The presence of solid particles in the engine’s gas path can erode thermal coatings and clog cooling channels, thereby reducing part life and engine performance. This study uses computational fluid dynamics to design the geometry of a static, inertial particle separator to remove small particles, such as sand, from the engine flow. The concept for the inertial separator includes the usage of a multiple louver array followed by a particle collector. The results of the study show a louver design can separate particles while not incurring large pressure loss.


Author(s):  
A. Carelli

The experience acquired in developing an automotive gas-turbine engine is traced. Problems of design, construction, and development unique to a small gas-turbine engine and its application to an automobile are discussed. The engine performance and operational characteristics are then described. Finally, there is a discussion of the problems that must be solved before gas-turbine engines may successfully compete with reciprocating engines in automotive road transport.


Author(s):  
Y. G. Li ◽  
P. Nilkitsaranont

Gas turbine engines experience degradation over time that cause great concern to gas turbine users on engine reliability, availability and operating costs. It has been realized in recent years that gas turbine diagnostics and prognostics is one of the key technologies to enable the move from time-scheduled maintenance to condition-based maintenance in order to improve engine reliability and availability and reduce life cycle costs. The objective of this paper is to introduce a systematic diagnostic and prognostic approach to assess the health condition and estimate the remaining useful life of gas turbine engines before their next major overhaul. A non-linear Gas Path Analysis (GPA) approach is used to assess engine performance degradation with the confidence measured by a GPA Index. A combined regression techniques, including both linear and quadratic models, is proposed to predict the remaining useful life of gas turbine engines. A statistic “Compatibility Check” is used to determine the switch point from linear regression to quadratic regression. The developed diagnostic and prognostic approach has been applied to a model gas turbine engine similar to Rolls-Royce Industrial AVON 1535 implemented with compressor degradation over time. The analysis shows that the developed diagnostic and prognostic approach has great potential to provide an estimation of engine remaining useful life before next major overhaul for gas turbine engines experiencing a typical slow degradation.


Sign in / Sign up

Export Citation Format

Share Document