scholarly journals Research on coverage control algorithm based on wireless sensor network

2020 ◽  
Vol 309 ◽  
pp. 03003
Author(s):  
Jie Zhou ◽  
Mengying Xu ◽  
Yi Lu ◽  
Rui Yang

Wireless sensor network has many sensor nodes with characteristics of limited cost, collecting data, good fault tolerance and storage. It has been used in environmental monitoring, health care, military and commercial. Coverage control is a significant issue that needs to be solved in wireless sensor networks. In order to solve the problem of overlapping coverage for environmental monitoring and improve coverage rate, an improved immune fuzzy genetic algorithm (IIFGA) based on cluster head selection is proposed. the mathematical model is systematically described. In the experiments, ant colony optimization (ACO) and simulated annealing (SA) are given to compare the performance of IIFGA. The experiments show the proposed coverage control algorithm has a higher convergence speed and improve the coverage rate.

Author(s):  
Veerabadrappa Veerabadrappa ◽  
Booma Poolan Marikannan

Wireless sensor network (WSN) is a vital form of the underlying technology of the internet of things (IoT); WSN comprises several energy-constrained sensor nodes to monitor various physical parameters. Moreover, due to the energy constraint, load balancing plays a vital role considering the wireless sensor network as battery power. Although several clustering algorithms have been proposed for providing energy efficiency, there are chances of uneven load balancing and this causes the reduction in network lifetime as there exists inequality within the network. These scenarios occur due to the short lifetime of the cluster head. These cluster head (CH) are prime responsible for all the activity as it is also responsible for intra-cluster and inter-cluster communications. In this research work, a mechanism named lifetime centric load balancing mechanism (LCLBM) is developed that focuses on CH-selection, network design, and optimal CH distribution. Furthermore, under LCLBM, assistant cluster head (ACH) for balancing the load is developed. LCLBM is evaluated by considering the important metrics, such as energy consumption, communication overhead, number of failed nodes, and one-way delay. Further, evaluation is carried out by comparing with ES-Leach method, through the comparative analysis it is observed that the proposed model outperforms the existing model.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


Author(s):  
Md. Habibur Rahman ◽  
Md. Ibrahim Abdullah

The nodes within a cluster of Wireless Sensor Network deployed in adverse areas face the security threats of eavesdropping and capturing. The fundamental issue in wireless sensor network security is to initialize secure communication between sensor nodes by setting up secret keys between communicating nodes. Because of limited hardware capacity, conventional network cryptography is infeasible for sensor network. In this paper a key management technique is proposed for clustered sensor network that uses some cryptographic operation to generate secret keys. This key is updated in response to the message of cluster head or base station. The key update instructions are stored in each sensor nodes before deployed in sensor field. The updated secret key is used to communicate between nodes and cluster head.


2019 ◽  
Vol 16 (9) ◽  
pp. 3925-3931
Author(s):  
Bhupesh Gupta ◽  
Sanjeev Rana

For resource constraint network, one uses wireless sensor network in which limited resources are there for sensor nodes. Basic aim of sensor node is to sense something, monitor it and explain it. The issue arises for sensor node is its battery endurance. The battery endurance of sensor node is consuming in communication instead of sensing. In this regard clustering is using now a day’s which reduces endurance consumption. This paper comes with a new clustering protocol MESAEED (Mutual Exclusive Sleep Awake Energy Efficient Distributed clustering), which helps in saving endurance of sensor nodes so that network lifetime will prolong. It is an extension work of previous work MESADC. In previous work cluster head is chooses on the basis of sleep awake mode in mutual exclusive way under communication range and the results were obtained with the help of comparison graph between HEED and MESADC. The proposed MESAEED protocol provides benefit of A* algorithm of heuristic search, HEED and MESADC. MATLAB 8.3 is use for simulation purpose. The comparison graph between HEED, MESADC and proposed MESAEED were shown. Parameters for comparison include alive nodes versus number of rounds taken and number of nodes dead versus number of rounds taken. The graph shows improvement in performance over HEED and MESADC, which results in enhancing lifetime of WSN.


2013 ◽  
Vol 321-324 ◽  
pp. 515-522 ◽  
Author(s):  
Kou Lin Yuan ◽  
Lin Qiao ◽  
Lei Han

This paper proposes a level and cluster based routing approach for a wireless sensor network. Nodes in the network are divided into several levels according to their hops to sink node. Every sensor node has a level number. Using level information, a sensor node can send messages to a sink node in a more efficient way, and a sink node can easily locate other sensor nodes. To make network more balanced, the paper introduces a cluster method, which splits nodes in the same level into different clusters, and chooses a cluster head for every cluster, to switch nodes in the cluster to work in turn. Unlike all other cluster routing methods, a cluster head node takes schedule jobs of sensor nodes in the cluster according to their energy left, instead of sensing. The paper also presents several algorithms for constructing a wireless sensor network, querying and scheduling. The simulation experiment shows that the scalability of our method is approximately linear.


Author(s):  
Wan Isni Sofiah Wan Din ◽  
Asyran Zarizi Bin Abdullah ◽  
Razulaimi Razali ◽  
Ahmad Firdaus ◽  
Salwana Mohamad ◽  
...  

<span lang="EN-US">Wireless Sensor Network (WSN) is a distributed wireless connection that consists many wireless sensor devices. It is used to get information from the surrounding activities or the environment and send the details to the user for future work. Due to its advantages, WSN has been widely used to help people to collect, monitor and analyse data. However, the biggest limitation of WSN is about the network lifetime. Usually WSN has a small energy capacity for operation, and after the energy was used up below the threshold value, it will then be declared as a dead node. When this happens, the sensor node cannot receive and send the data until the energy is renewed. To reduce WSN energy consumption, the process of selecting a path to the destination is very important. Currently, the data transmission from sensor nodes to the cluster head uses a single hop which consumes more energy; thus, in this paper the enhancement of previous algorithm, which is MAP, the data transmission will use several paths to reach the cluster head. The best path uses a small amount of energy and will take a short time for packet delivery. The element of Shortest Path First (SPF) Algorithm that is used in a routing protocol will be implemented. It will determine the path based on a cost, in which the decision will be made depending on the lowest cost between several connected paths. By using the MATLAB simulation tool, the performance of SPF algorithm and conventional method will be evaluated. The expected result of SPF implementation will increase the energy consumption in order to prolong the network lifetime for WSN.</span>


Sign in / Sign up

Export Citation Format

Share Document