scholarly journals The mechanical performance of 3D printed hierarchical honeycombs using carbon fiber and carbon nanotube reinforced acrylonitrile butadiene styrene filaments

2020 ◽  
Vol 318 ◽  
pp. 01049
Author(s):  
Michel Theodor Mansour ◽  
Konstantinos Tsongas ◽  
Dimitris Tzetzis

The aim of this paper is to design hierarchical honeycombs as well as manufacturing such structures with a commercial 3D Printer using Fused Filament Fabrication (FFF) technique. The materials under study are commercial filaments such as acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/carbon fibers (ABS/CF) and acrylonitrile butadiene styrene/carbon nanotubes (ABS/CNTs). The fabricated hierarchical honeycombs were examined by compression tests in order to evaluate the mechanical behaviour of such honeycomb 3D printed structures. The compression behaviour of the hierarchical honeycombs was assessed also with finite element analysis (FEA) and at the end there was a comparison with the experimental findings. The results reveal that the 2nd order hierarchy presented an increase both in stiffness and strength in comparison with the 0th and the 1st hierarchies which make such designs a suitable for structures require such properties. Also, the results reveal that ABS/carbon fiber constructs outperform the other materials under study.

2021 ◽  
Vol 5 (2) ◽  
pp. 62
Author(s):  
Michel Theodor Mansour ◽  
Konstantinos Tsongas ◽  
Dimitrios Tzetzis

The mechanical properties of Fused Filament Fabrication (FFF) 3D printed specimens of acrylonitrile butadiene styrene (ABS), ABS reinforced with carbon fibers (ABS/CFs) and ABS reinforced with carbon nanotubes (ABS/CNTs) are investigated in this paper using various experimental tests. In particular, the mechanical performance of the fabricated specimens was determined by conducting compression and cyclic compression testing, as well as nanoindentation tests. In addition, the design and the manufacturing of hierarchical honeycomb structures are presented using the materials under study. The 3D printed honeycomb structures were examined by uniaxial compressive tests to review the mechanical behavior of such cellular structures. The compressive performance of the hierarchical honeycomb structures was also evaluated with finite element analysis (FEA) in order to extract the stress-strain response of these structures. The results revealed that the 2nd order hierarchy displayed increased stiffness and strength as compared with the 0th and the 1st hierarchies. Furthermore, the addition of carbon fibers in the ABS matrix improved the stiffness, the strength and the hardness of the FFF printed specimens as well as the compression performance of the honeycomb structures.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1589 ◽  
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Athena Maniadi ◽  
Emmanuel Koudoumas ◽  
Marco Liebscher ◽  
...  

In order to enhance the mechanical performance of three-dimensional (3D) printed structures fabricated via commercially available fused filament fabrication (FFF) 3D printers, novel nanocomposite filaments were produced herein following a melt mixing process, and further 3D printed and characterized. Titanium Dioxide (TiO2) and Antimony (Sb) doped Tin Oxide (SnO2) nanoparticles (NPs), hereafter denoted as ATO, were selected as fillers for a polymeric acrylonitrile butadiene styrene (ABS) thermoplastic matrix at various weight % (wt%) concentrations. Tensile and flexural test specimens were 3D printed, according to international standards. It was proven that TiO2 filler enhanced the overall tensile strength by 7%, the flexure strength by 12%, and the micro-hardness by 6%, while for the ATO filler, the corresponding values were 9%, 13%, and 6% respectively, compared to unfilled ABS. Atomic force microscopy (AFM) revealed the size of TiO2 (40 ± 10 nm) and ATO (52 ± 11 nm) NPs. Raman spectroscopy was performed for the TiO2 and ATO NPs as well as for the 3D printed nanocomposites to verify the polymer structure and the incorporated TiO2 and ATO nanocrystallites in the polymer matrix. The scope of this work was to fabricate novel nanocomposite filaments using commercially available materials with enhanced overall mechanical properties that industry can benefit from.


Computers ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 19
Author(s):  
Sidonie F. Costa ◽  
Fernando M. Duarte ◽  
José A. Covas

Additive Manufacturing Techniques such as Fused Filament Fabrication (FFF) produce 3D parts with complex geometries directly from a computer model without the need of using molds and tools, by gradually depositing material(s), usually in layers. Due to the rapid growth of these techniques, researchers have been increasingly interested in the availability of strategies, models or data that may assist process optimization. In fact, 3D printed parts often exhibit limited mechanical performance, which is usually the result of poor bonding between adjacent filaments. In turn, the latter is influenced by the temperature field history during deposition. This study aims at evaluating the influence of the phase change from the melt to the solid state undergone by semi-crystalline polymers such as Polylactic Acid (PLA), on the heat transfer during the deposition stage. The energy equation considering solidification is solved analytically and then inserted into a MatLab® code to model cooling in FFF. The deposition and cooling of simple geometries is studied first, in order to assess the differences in cooling of amorphous and semi-crystalline polymers. Acrylonitrile Butadiene Styrene (ABS) was taken as representing an amorphous material. Then, the deposition and cooling of a realistic 3D part is investigated, and the influence of the build orientation is discussed.


Author(s):  
Pawan Verma ◽  
Jabir Ubaid ◽  
Andreas Schiffer ◽  
Atul Jain ◽  
Emilio Martínez-Pañeda ◽  
...  

AbstractExperiments and finite element (FE) calculations were performed to study the raster angle–dependent fracture behaviour of acrylonitrile butadiene styrene (ABS) thermoplastic processed via fused filament fabrication (FFF) additive manufacturing (AM). The fracture properties of 3D-printed ABS were characterized based on the concept of essential work of fracture (EWF), utilizing double-edge-notched tension (DENT) specimens considering rectilinear infill patterns with different raster angles (0°, 90° and + 45/− 45°). The measurements showed that the resistance to fracture initiation of 3D-printed ABS specimens is substantially higher for the printing direction perpendicular to the crack plane (0° raster angle) as compared to that of the samples wherein the printing direction is parallel to the crack (90° raster angle), reporting EWF values of 7.24 kJ m−2 and 3.61 kJ m−2, respectively. A relatively high EWF value was also reported for the specimens with + 45/− 45° raster angle (7.40 kJ m−2). Strain field analysis performed via digital image correlation showed that connected plastic zones existed in the ligaments of the DENT specimens prior to the onset of fracture, and this was corroborated by SEM fractography which showed that fracture proceeded by a ductile mechanism involving void growth and coalescence followed by drawing and ductile tearing of fibrils. It was further shown that the raster angle–dependent strength and fracture properties of 3D-printed ABS can be predicted with an acceptable accuracy by a relatively simple FE model considering the anisotropic elasticity and failure properties of FFF specimens. The findings of this study offer guidelines for fracture-resistant design of AM-enabled thermoplastics. Graphical abstract


2020 ◽  
Vol 108 (7-8) ◽  
pp. 2525-2539 ◽  
Author(s):  
Mohd Fadzli Bin Abdollah ◽  
Mohamad Nordin Mohamad Norani ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Hilmi Amiruddin ◽  
Faiz Redza Ramli ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4249
Author(s):  
Diana Popescu ◽  
Florin Baciu ◽  
Catalin Gheorghe Amza ◽  
Cosmin Mihai Cotrut ◽  
Rodica Marinescu

Producing parts by 3D printing based on the material extrusion process determines the formation of air gaps within layers even at full infill density, while external pores can appear between adjacent layers making prints permeable. For the 3D-printed medical devices, this open porosity leads to the infiltration of disinfectant solutions and body fluids, which might pose safety issues. In this context, this research purpose is threefold. It investigates which 3D printing parameter settings are able to block or reduce permeation, and it experimentally analyzes if the disinfectants and the medical decontamination procedure degrade the mechanical properties of 3D-printed parts. Then, it studies acetone surface treatment as a solution to avoid disinfectants infiltration. The absorption tests results indicate the necessity of applying post-processing operations for the reusable 3D-printed medical devices as no manufacturing settings can ensure enough protection against fluid intake. However, some parameter settings were proven to enhance the sealing, in this sense the layer thickness being the most important factor. The experimental outcomes also show a decrease in the mechanical performance of 3D-printed ABS (acrylonitrile butadiene styrene) instruments treated by acetone cold vapors and then medical decontaminated (disinfected, cleaned, and sterilized by hydrogen peroxide gas plasma sterilization) in comparison to the control prints. These results should be acknowledged when designing and 3D printing medical instruments.


2020 ◽  
Vol 17 (5) ◽  
pp. 570-588
Author(s):  
Ehsan Firouzi ◽  
Hassan Hajifatheali ◽  
Ebrahim Ahmadi ◽  
Mohammadreza Marefat

Acrylonitrile is a key precursor in the production of a wide range of products in the chemical industries. The major products of acrylonitrile include acrylonitrile butadiene styrene resin, acrylic fibers, and adiponitrile. The demand for the roduction of acrylonitrile is affected by the global economy but because of the development of living standards; the demand for producing acrylonitrile and its derivations are significantly increasing. So in 2016, China alone produced 32% of the world’s acrylonitrile, and its production is expected to have a 55% increase in 2021. Acrylonitrile and its derivations have wide applications in different industries like car manufacturing, electronics, aerospace, and textile. Considering the importance of the acrylonitrile precursor in the current world, in this study, we discuss and investigate its production processes, the obtained copolymers, and polyacrylonitrile production and its application in the carbon fibers and compare it with other carbon fiber precursors such as mesophase pitch and cellulose. We also focus on its marketing in the world.


Sign in / Sign up

Export Citation Format

Share Document