scholarly journals THE IMPACT OF RESPONSIVE SYSTEMS ON ENERGY CONSUMPTION AND THERMAL PERFORMANCE OF BUILDINGS

2019 ◽  
Vol 14 (52) ◽  
pp. 1037-1049
Author(s):  
Manar Fouad ◽  
Vitta Ibrahim ◽  
Ahmed Radwan
2020 ◽  
Vol 330 ◽  
pp. 01011
Author(s):  
Labouda Ba ◽  
Ikram El Abbassi ◽  
Cheikh S.E Kane ◽  
A-M Darcherif ◽  
Mamoudou Ndongo

Developing countries are facing population growth, which leads, on the one hand, to increased requirements for buildings and, on the other hand, to the depletion of fossil fuels along with exposure, of people living in those areas, to some detrimental consequences of climate change. Because of these factors, we propose approaches to control energy consumption in buildings. In some countries, the architectures adopted are not adequate to the environment and climate, resulting in discomfort in those buildings, in such circumstances, residents resort to the use of energy systems, such as heating, ventilation, and air conditioning, which leads to exorbitant electricity bills. Housing consumes 40% of the world's energy and is responsible for a third of greenhouse gas emissions. Optimizing energy needs in buildings is a solution to overcome these problems. For this purpose, there are solutions such as: the design of the building characterized by its shape and envelope, while using less energy-consuming equipment. For several years, the building materials sector has been developing with a particular focus on bio-source materials, which are generally materials with good thermal performance. In order to highlight the thermal performance of bio-source materials, we will study the case of Typha Australis which is a plant of the Typhaceae family that grows abundantly in an aquatic environment mainly in the Senegal River valley.Recent studies showed that Typha Australis has good thermal insulation properties. In order to determine the impact of Typha Australis on a building, a dynamic thermal simulation was carried out using the Trnsys software according to specific scenarios, the Typha was mixed with other local materials and used as a wall insulation panel, the result of the study shows that this fiber has allowed us to optimize energy consumption in a building. Mixing Typha with other materials (e. g. clay) is a promising solution for energy efficiency in buildings.


2018 ◽  
Vol 28 (2) ◽  
pp. 195-216 ◽  
Author(s):  
Yuekuan Zhou ◽  
Chuck Wah Yu

A new ventilated Trombe wall (VTW) constituted with double Phase Change Material (PCM) wallboards (PCMs-VTW) has been developed. The year-round thermal performance of the system was evaluated via an experimentally validated model. The impact of the transition temperature of PCMs and air change rate on cooling and heating load were determined. Also, the total energy and the electric energy consumption of the fan were evaluated. The new PCMs-VTW can contribute to a reduction in the cooling load (14.8%) and heating load (12.7%) when fusion temperatures of PCMs in exterior and interior PCM wallboards were 26°C and 22°C, respectively. As a result, the total energy consumption was reduced, relative to the use of a shading device, by 5.83 kWh in summer and 23.54 kWh in winter. The proposed system is beneficial to indoor thermal comfort during summer and winter. The test room fitted with the PCMs-VTW has an average predicted mean vote (PMV) of 0.97 and a predicted percentage dissatisfied (PPD) of 12.5% in summer; and a PMV of –0.32 and 9.6% PPD in winter. By contrast, the test room fitted with a split-type air conditioner has a PMV of 2.71 and a PPD of 23.9% in summer and a PMV of –1.71 and 29.8% PPD in winter.


2020 ◽  
Vol 42 (1) ◽  
pp. 45-61
Author(s):  
Daeung Danny Kim

In general, a double-skin façade has been used to reduce energy consumption as well as to improve thermal performance in buildings as a buffer space between indoors and outdoors. The goal of this study is to undertake pre-normative research to provide information for developing a comprehensive double-skin façade system under the climatic condition in Saudi Arabia. To pursue this goal, the characteristics associated with the double-skin façade system are identified. In addition, the impact of various configurations on the thermal performance of the double-skin façades is evaluated under the weather situation in Saudi Arabia. Computational double-skin façade models are created by computational fluid dnamics simulation to assess the thermal performance of the various configurations such as cavity geometry and the use of a shading device. As a result, the variation of the opening size has a significant impact on the temperature in the cavity of the double-skin façade. For the air velocity in the cavity, the variation of the opening size and cavity depth is less sensitive. Moreover, the use of a shading device has an impact on the temperature drop in the cavity of the double-skin façade. Practical application: Generally, many studies have investigated the efficiency of double-skin façade applications due to its beneficial aspects. However, a few buildings have adopted double-skin façades to their envelopes. With a substantial growing demand for building industry in Saudi Arabia, double-skin façade applications to building design can be a solution for reducing building energy consumption. The present study investigates the thermal performance of double-skin façades under hot climates in Saudi Arabia and it can provide information for building stakeholders to develop proper double-skin façade systems


2021 ◽  
Vol 13 (24) ◽  
pp. 14018
Author(s):  
Sara Elhadad ◽  
Zoltan Orban

Sensitivity analysis is crucial in building energy assessments. It is used to determine the major variables influencing building thermal performance, using both observational research and energy simulation models. This study investigates the most influential envelope design parameters on the thermal performance of a typical residential building in Budapest, Hungary. Sensitivity analysis is used in conjunction with the IDA-Indoor and Climate Energy (IDA-ICE 4.8) simulation tool to assess the effects of 33 envelope design parameters for energy consumption and carbon dioxide concentrations. The input parameters include thickness, materials, density, specific heat and thermal conductivity of the basement, exterior floor, interior floor, exterior wall, interior wall, roof, ground slab, glazing type, and infiltration rate. The results show that exterior floor materials have the biggest impact on annual delivered energy for heating and cooling, whereas the density of all structural elements and thickness of the basement, exterior floors, interior floors, and walls have minimal effects on energy consumption. It is also shown that the impact of all investigated parameters is not sensitive to the carbon dioxide concentration in the building. The authors consider that the findings of the paper assist designers to assess the performance of existing buildings and more efficiently generating alternative solutions in the energetic retrofitting of existing and energy design of new residential buildings.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


The demand for energy consumption requires efficient financial development in terms of bank credit. Therefore, this study examines the nexus between Financial Development, Economic Growth, Energy Prices and Energy Consumption in India, utilizing Vector Error Correction Model (VECM) technique to determine the nature of short and long term relationships from 2010 to 2019. The estimation of results indicates that a one percent increase in bank credits to private sector results in 0.10 percent increase in energy consumption and 0.28 percent increase in energy consumption responses to 1 percent increase in economic growth. It is also observed that the impact of energy price proxied by consumer price index is statistically significant with a negative sign indicating the consistency with the theory.


Sign in / Sign up

Export Citation Format

Share Document