scholarly journals Experimental steam turbine T10MW cold end cooling by water spraying

2021 ◽  
Vol 345 ◽  
pp. 00010
Author(s):  
Michal Hoznedl

The paper deals with steam flow in experimental turbine T10MW, located in Škoda laboratory. The flow was examined for low or negative outputs of the turbine, i.e. for the so called last stages ventilation. The flow path of the turbine was in the Boiler Feed Pump Turbine (BFPT) version. It had all together 4 stages out of which two were last stages with the outlet to the condenser. In the area of each of the two outlets cooling nozzles were located with water for cooling the outlet steam flow and the area of last blades root cross-sections. Cooling of these areas is necessary due to the compression heat that occurs in the off design (ventilation) regimes. Various proportional amounts of cooling water and flowing steam were tested experimentally in constant pressure behind both last stages. Due to the fact that the flow path and the exhaust hood were fitted with many static pressure taps, thermometers and with the possibility of probing the temperature field along the outlet cross-section height, a number of results were achieved. These were mainly the turbine outputs, steam flows through the blades and cooling nozzles, determination of saturation limits in individual places at the outlet as well as temperature differences measured by the probe and stable thermometers. It was found out that the amount of cooling water was oversized for blade roots cooling, while the flow at the tip was cooled only minimally. The results are beneficial both in terms of further research of steam turbines in low regimes because this is how most newly produced machines are operated and for the designers of these machines.

Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document