scholarly journals The Preparation of Boron-doped Activated Alumina by impregnating boron in the period of boehmite

2021 ◽  
Vol 353 ◽  
pp. 01026
Author(s):  
Rong Fu

This paper systematically studied the pore structure, crystal phase, surface acidity and the chemical environment of aluminum of boron-doped γ-alumina, by impregnating boron in the period of boehmite. The nitrogen adsorption, XRD, FTIR etc. technique was used to determine the pore texture, crystallography, acid/base properties and aluminum coordination. the XRD spectrum of boria-alumina have no significant change due to the addition of boron. The specific surface area and pore volume diameter of B-Al2O3 increase significantly. The NMR spectra of B-Al2O3 shows that boron changed the chemical environment of aluminum, which caused differences in the physical and chemical properties of the surface.

2019 ◽  
Vol 942 ◽  
pp. 40-49
Author(s):  
Yulia Murashkina ◽  
Olga B. Nazarenko

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.


2018 ◽  
Vol 6 (21) ◽  
pp. 10111-10120 ◽  
Author(s):  
Yuntong Zhu ◽  
Ki Chul Kim ◽  
Seung Soon Jang

Boron-doped coronenes are attractive as promising positive electrode materials for lithium-ion batteries due to the unique physical and chemical properties of coronene.


2012 ◽  
Vol 524-527 ◽  
pp. 887-893 ◽  
Author(s):  
Jun Guan ◽  
De Min He ◽  
Bin Bin Song ◽  
Qiu Min Zhang

Lignite samples, Huolinhe(HLH) and Xiaolongtan(XLT) lignites were used for experiments. Mild pyrolysis experiments were carried out by final temperature 150~450°C. Physical and chemical properties have been investigated using thermogravimetric, FTIR analysis, nitrogen adsorption and oxygen-functional group analysis. Besides, the changes of the surface properties during upgrading were characterized in detail. The results show that specific surface area and moisture-holding capacity have the trend of first decreases and then increases in the upgrading temperature range. Furthermore, the decomposition of the oxygen-bearing functional groups on the coal surface which reduced the moisture-holding capacity. Oxygen absorption experiments indicate that thermal upgrading could decrease the tendency of lignite to spontaneous combustion.


2010 ◽  
Vol 64 (1) ◽  
Author(s):  
Yunfei Bi ◽  
Shuangqin Zeng ◽  
Dadong Li ◽  
Hong Nie

AbstractAmmonium dioxothiotungstate was synthesized using different tungsten sources and characterized in detail by powder X-ray diffraction, energy dispersive X-ray spectrometry, transmission electron microscopy, nitrogen adsorption, and temperature-programmed sulfidation. It was found that tungsten oxide nanobelts are superior to ammonium metatungstate as tungsten source for the synthesis of ammonium dioxothiotungstate due to a time-consuming aging step being excluded from the synthesis route. Moreover, detailed characteristic data reveal that, when tungsten oxide nanobelts are used, the physical and chemical properties of the resulting ammonium dioxothiotungstate including particles size, specific surface area, and sulfidation pattern were improved. Also, the hydrodesulfurization measurements showed higher catalytic activity and balanced selectivity of the resulting ammonium dioxothiotungstate.


2012 ◽  
Vol 463-464 ◽  
pp. 133-137 ◽  
Author(s):  
Hong Qin ◽  
Zhi Jia Tan ◽  
Qing Wang

The ash of Huadian oil shale is made to remove H2S in this experiment. XRD and nitrogen adsorption experiments are used to analyze the physical and chemical properties of the ash, the results show that the ash of oil shale has many metal and nonmetal oxides, and also has much microporous and mesoporous, all above is helpful to remove H2S. The sample is modified by different ways to see the change of adsorption capacity. the sample which is modified by alkali and sprinkler is the best adsorbent, but the sample which is modified by microwave does not increase the removal ability obviously.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document