Carbonitriding: kinetic modeling of ammonia and acetylene decomposition at high temperature and low pressure

2018 ◽  
Vol 106 (1) ◽  
pp. 103 ◽  
Author(s):  
Elena Vyazmina ◽  
Jie Sheng ◽  
Simon Jallais ◽  
Lucas Bustamante-Valencia ◽  
Pierre Bruchet ◽  
...  

The process of carbonitriding is similar to the process of carburization yet with additional ammonia to increase the hardness of the metal surface. Carbonitriding is performed at approximately 850 °C–880 °C, which is lower compare to carburizing and low pressure (10–50 mbar). The process consists of two stages: decomposition of ammonia and diffusion of “activated nitrogen”, and decomposition of acetylene and diffusion of carbon. The decomposition of acetylene is a very complex phenomenon, depending on the temperature, pressure and residence time (the time of presence of acetylene in a furnace). Different reaction products form: small molecules (H2, CH4, C2H4, C6H6, etc.), fine-crystalline graphite (the one that diffuses into the metal surface), polycyclic aromatic hydrocarbons (PAHs), soot etc. The current investigation is based on detailed kinetic modeling (using Chemkin 17.1) of the acetylene decomposition in the atmosphere of a reactor. For this modeling three different comprehensive mechanisms from the literature are considered: the mechanism of K. Norinaga (including 227 species, 827 reactions), the mechanism of T. Bensabath (including 364 species, 1245 reactions) and the mechanism of C. Saggese (including 350 species, more than 10,000 reactions). Comparison of simulation results with experimental data from the literature showed good agreement, demonstrating their applicability for modeling of industrial process. A parametric study suggests the best parameters for acetylene decomposition in a furnace.

Author(s):  
Haldun Kurama

Nowadays, with the environmental regulations becoming more and more stringent and growing pressure on the conservation of mineral resources, recycling has been gaining interest to develop economically‐viable refining technology. As the costs of the wastewater disposal increase (especially in the metal finishing industry) more emphasis is being placed on the recovery and recycling of valuable chemicals contained within these streams. In this study, a commercial plating plant filter waste (PPFW) was examined as an alternative source for the recovery of Ni as a nickel rich precipitate. The treatment tests performed by H2SO4 leaching method showed that dissolution amounts of metals such as Ni, Cu, Zn and Cr were affected by leaching time, temperature and acid concentration. Although the dissolution of metallic compounds almost was completed within the one hour of the extraction time, a rapid and higher dissolution amounts of Ni within the first minute of the leaching process (approximately 81% of the total extractable amount of Ni is extracted at the beginning period for 24 °C) indicated that the usage of this waste as a source of Ni has an advantage compared to Ni recovery from natural ores. A kinetic study carried out to clarify the dissolution of Ni, showed that a series of rate controlling steps, both chemical and diffusion reactions, was involved in the observed kinetic. After leaching, the filtered solution was subjected to two stages of controlled precipitation carried out at a pH of about 4–5.5 and about 8 to produce the solids containing non‐nickel and nickel respectively. The precipitation test performed by NaOH or MgO showed that almost all of the dissolved Ni ions were seperated from the solution. Based on the XRD and IR analysis, it was found out that a final precipitate, obtained by the use of NaOH, could be characterized as a disordered α‐Ni(OH) or as a blend of α and β‐Ni(OH)2, as for the MgO, the precipitate composed of mainly β‐(Ni(OH)2) phase and/or α‐(Ni(OH)2) phases. Santrauka Griežtėjant aplinkos apsaugos reikalavimams ir didėjant poreikiui taupyti mineralinius išteklius, siekiama plėtoti ekonomiškai perspektyvias rafinavimo technologijas. Ypač tai svarbu metalų apdirbimo pramonėje, nes didėja nuotekų šalinimo išlaidos. Išeitis būtų vertingų cheminių preparatų, susidarančių šiuose srautuose, pakartotinis panaudojimas ir perdirbimas. Šiame darbe nikeliavimo gamyklos atliekų filtras buvo išnagrinėtas kaip alternatyvus šaltinis nikeliui išgauti iš nikelio įsisotinusių nuosėdų. Apdorojimo testas atliktas taikant H2SO4 išplovimo metodą. Nustatyta, kad ištirpusių metalų, kaip antai: Ni, Cu, Zn, ir Cr, – kiekiai priklausė nuo plovimo trukmės, temperatūros ir rūgšties koncentracijos. Nors metalų junginiai beveik visai ištirpo per vieną plovimo valandą, iš proceso spartos ir didesnio ištirpusio Ni kiekio per pirmąją plovimo minutę (apytiksliai 81 % bendro išgauto Ni kiekio yra išgaunama pradiniu periodu esant 24 °C temperatūrai) galima spręsti, kad šių atliekų kaip Ni šaltinio panaudojimas yra pranašesnis, palyginti su Ni išgavimu iš natūralios rūdos. Atlikus kinetinį tyrimą Ni tirpumui nustatyti, paaiškėjo, kad proceso spartą lėmė cheminės ir difuzijos reakcijos. Filtruotasis tirpalas buvo nukreiptas nusodinti. Tai atlikta dviem etapais, kontroliuojant sąlygas, kai pH 4–5,5 ir vėliau pH 8,0 – atitinkamai išgaunant nuosėdas. Iš nusodinimo testo, atlikto su NaOH ar MgO, akivaizdu, kad beveik visi ištirpę nikelio jonai buvo išskirti iš tirpalo. Remiantis XRD ir IR analize, nustatyta, kad galutinės nuosėdos, susidarę naudojant NaOH, gali būti apibūdinamos kaip netvarkingas α-Ni(OH) arba kaip α ir β-Ni(OH)2 mišinys, o naudojant MgO, nuosėdos susidarė iš β-(Ni(OH)2 ) ir/arba α-(Ni(OH)2 ) fazių. Резюме В связи с ужесточением требований по охране окружающей среды и природных ресурсов заслуживает внимания вопрос о расширении применения экономически перспективных технологий по рафинированию. Это особенно касается металлургической промышленности в связи с увеличением расходов на удаление стоков, повторное применение и переработку ценных химических препаратов, оcтающихся в стоках. В статье описано исследование коммерческого фильтра по удалению отходов на заводе по обработке никеля в качестве альтернативного источника по получению никеля из осадков. Тест по обработке осадков, выполненный с применением метода вымывания H2SO4 , показал, что количество таких растворенных металлов, как Ni, Cu, Zn и Cr, зависит от времени вымывания, температуры и концентрации кислоты. Несмотря на то, что соединения металлов почти полностью растворились в течение одного часа вымывания, быстрое и большее количество растворенного в первую минуту вымывания Ni (приблизительно 81% от общего количества полученного Ni получают в начальный период при температуре 24 °C) показало, что применение этих отходов в качестве источника Ni имеет преимущество по сравнению с получением никеля из природной руды. Кинетическое исследование растворимости Ni показало, что скорость процесса обусловили как химические, так и диффузные реакции. После вымывания отфильтрованный раствор подвергался двухэтапному осаждению при pH 4–5,5 и позже pH 8,0. Тест по вымыванию NaOH или MgO показал, что почти все растворенные ионы никеля были выделены из раствора. На основании анализа XRD и IR установлено, что окончательный осадок, образовавшийся с применением NaOH, может быть охарактеризован как неупорядоченный α-Ni(OH) или как смесь α ir β-Ni(OH)2 , в то время как при применении MgO осадки выпадали в фазах β-(Ni(OH)2) и/или α-(Ni(OH)2).


1960 ◽  
Vol 38 (11) ◽  
pp. 1406-1427 ◽  
Author(s):  
W. Rabinovitch

The one-dimensional heat equation is solved for exponentially decaying rate of increment and decrement of temperature at the surface of a semi-infinite medium.The diffusion equation is solved for exponentially decaying rate of transfer from a source to a diffusion medium. The two types of sources are: mass initially (a) located at a point, and (b) distributed at interfaces within a porous rectangular parallelepiped or sphere. Solutions for subsequent concentration distribution are stated, and compared with the well-known cases of instantaneous transfer. Numerical evaluation is afforded by the probability integral of complex argument. The treatment is applicable to cases of first-order irreversible chemical reaction and simultaneous diffusion of reaction products.


Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 253-256
Author(s):  
N Sriramula ◽  
M Chaudhuri

An investigation was undertaken on the removal of a model virus, bacterial virus MS2 against Escherichia coli, by sand filtration using untreated, and alum or cationic polyelectrolyte treated media, and uncoagulated as well as alum coagulated influent. Data on discrete virus removal were satisfactorily accounted for by electrokinetic phenomena and diffusion. For virus in association with turbidity, filter coefficients computed from experimental data were in good agreement with those predicted by mechanical straining and gravity settling which were the dominant mechanisms for removal of the turbidity particles to which the viruses attached.


1997 ◽  
Vol 36 (10) ◽  
pp. 37-44 ◽  
Author(s):  
Eduardo Torres ◽  
Raunel Tinoco ◽  
Rafael Vazquez-Duhalt

Lignin peroxidase, cytochrome c and haemoglobin were tested for oxidation of polycyclic aromatic hydrocarbon (PAH) in the presence of hydrogen peroxide. The reaction mixture Contained water-miscible organic solvents in order to reduce the mass transfer limitation of hydrophobic substrates. The reaction products from all three haemoproteins were mainly quinones, suggesting the same oxidation mechanism for the three biocatalysts. The haeme prosthetic group must have located in a protein environment for it to catalyze these reactions, and only certain types of protein environment are able to induce this type of haemebased catalytic activity. The solvent hydrophobicity is a factor affecting the biocatalysis in organic media. Substrate partitioning between the active site (haeme) and the bulk solvent is the main factor of the biocatalytic behaviour in organic solvent mixtures. Site-directed mutagenesis of yeast cytochrome c significantly altered the kinetic behaviour of the protein. The Gly82;Thr 102 variant was 10 times more active and showed a catalytic efficiency 10-fold greater than the wild-type iso-1-cytochrome c. These results suggest that it is possible to design a new biocatalyst for environmental purposes.


2021 ◽  
Vol 13 (11) ◽  
pp. 6052
Author(s):  
Paola Comodi ◽  
Azzurra Zucchini ◽  
Umberto Susta ◽  
Costanza Cambi ◽  
Riccardo Vivani ◽  
...  

A multi-methodic analysis was performed on five samples of fly ashes coming from different biomasses. The aim of the study was to evaluate their possible re-use and their dangerousness to people and the environment. Optical granulometric analyses indicated that the average diameter of the studied fly ashes was around 20 µm, whereas only ~1 vol% had diameters lower that 2.5 µm. The chemical composition, investigated with electron probe microanalysis, indicated that all the samples had a composition in which Ca was prevalent, followed by Si and Al. Large contents of K and P were observed in some samples, whereas the amount of potentially toxic elements was always below the Italian law thresholds. Polycyclic aromatic hydrocarbons were completely absent in all the samples coming from combustion plants, whereas they were present in the fly ashes from the gasification center. Quantitative mineralogical content, determined by Rietveld analysis of X-ray powder diffraction data, indicated that all the samples had high amorphous content, likely enriched in Ca, and several K and P minerals, such as sylvite and apatite. The results obtained from the chemo-mineralogical study performed make it possible to point out that biomass fly ashes could be interesting materials (1) for amendments in clayey soils, as a substitution for lime, to stimulate pozzolanic reactions and improve their geotechnical properties, thus, on the one hand, avoiding the need to mine raw materials and, on the other hand, re-cycling waste; and (2) as agricultural fertilizers made by a new and ecological source of K and P.


2021 ◽  
Vol 11 (3) ◽  
pp. 1243
Author(s):  
Hongseok Jeong ◽  
Jeung-Hoon Lee ◽  
Yong-Hyun Kim ◽  
Hanshin Seol

The dominant underwater noise source of a ship is known to be propeller cavitation. Recently, attempts have been made to quantify the source strength using on-board pressure sensors near the propeller, as this has advantages over conventional noise measurement. In this study, a beamforming method was used to estimate the source strength of a cavitating propeller. The method was validated against a model-scale measurement in a cavitation tunnel, which showed good agreement between the measured and estimated source levels. The method was also applied to a full-scale measurement, in which the source level was measured using an external hydrophone array. The estimated source level using the hull pressure sensors showed good agreement with the measured one above 400 Hz, which shows potential for noise monitoring using on-board sensors. A parametric study was carried out to check the practicality of the method. From the results, it was shown that a sufficient recording time is required to obtain a consistent level at high frequencies. Changing the frequency resolution had little effect on the result, as long as enough data were provided for the one-third octave band conversion. The number of sensors affected the mid- to low-frequency data.


2010 ◽  
Vol 157 (9) ◽  
pp. 1686-1697 ◽  
Author(s):  
Lidong Zhang ◽  
Jianghuai Cai ◽  
Taichang Zhang ◽  
Fei Qi

Sign in / Sign up

Export Citation Format

Share Document