scholarly journals Investigation of process parameters and plate local thickening on residual stresses in hot stamping process

2021 ◽  
Vol 22 ◽  
pp. 18
Author(s):  
Jinbo Li ◽  
Xiaohui Chen ◽  
Xianlong Liu

In this paper, local-thickened plates are adopted for aluminum alloy square cups stamping with relatively low values of residual stresses and small radius at the bottom corner. By utilizing numerical and experimental methods, the effects of process parameters and plate local thickening on the residual stress distribution of hot stamped aluminum alloy square cups are studied. Furthermore, the influence of plate local thickening on the radius of bottom corner of square cups is also investigated. The results showed that with an increase in the forming temperature, blank holder force and die corner radius, residual stresses in hot stamped square cups can be reduced. The same effect can be achieved by decreasing the die entrance radius. As opposed to the flat plates, using local-thickened plates can not only reduce the residual stresses values in hot stamped square cups, but also decrease the radius at the bottom corner of square cups. When the optimized thickening scheme of plate is used, the smaller radius at the bottom corner, the lower residual stresses in the square cups are obtained.

2021 ◽  
Vol 871 ◽  
pp. 73-79
Author(s):  
Jin Bo Li

In this study, the effect of forming temperature, blank holder force, die entrance radius, die corner radius and blank local thickening on the springback of square cups were studied, by conducting finite element simulations of the hot stamping of 2024 aluminum alloy sheet blanks. Within the range of process parameters investigated in this study, increasing the forming temperature, blank holder force and die corner radius or decreasing the die entrance radius all lead to lower values of springback in hot stamped square cups after unloading. Compared to uniform blank, local-thickened sheet blank can significantly reduce the springback in hot stamped square cup. When the side length of the square-ring-shaped convex rib of the thickened blank is equal to the punch width and the convex rib faces downward, significant reductions in the springback, of at least 55.9%, can be achieved.


2016 ◽  
Vol 851 ◽  
pp. 163-167
Author(s):  
Dong Yan Lin ◽  
Yi Li

The hydroforming process of the aluminum alloy panel was simulated by the software DYNAFORM. The effects of process parameters (blank holder force, depth of panel and height of draw bead) on springback of the aluminum alloy were investigated. The max springback of the panel was analyzed by weighted scoring method. Then the process parameters were synthetically optimized for the max positive and negative springback. The results showed that the height of draw bead affects obviously the comprehensive springback of the panel. The optimization of the process parameters obtained by the orthogonal experiment can effectively reduce the max springback of the panel.


2010 ◽  
Vol 129-131 ◽  
pp. 322-327 ◽  
Author(s):  
Zhong Wen Xing ◽  
Jun Jia Cui ◽  
Hong Sheng Liu ◽  
Chun Feng Li

Hot stamping is an innovative way to manufacture complex-shaped components of high strength steel (HSS) sheet with a minimum of springback, meanwhile, it can also obviously improve the tensile strength of the formed parts.The coupled thermo-mechanical FE model for hot stamping of HSS sheet for the B pillar was established by commercial software Pam-stamp. Dynamic explicit module was used to simulate the forming processes under different process parameters. The effects of process parameters on thinning of the blank were studied, the maximum thinning zones of the blank in hot stamping were analyzed. The results show that the thinning rates of the blank increase when the blank holder force(BHF) and friction coefficient increase, the maximum thinning zones appear at the straight wall and corner of the B pillar. The causal of blank thinning during hot stamping was analyzed. Experiments had been conducted with the process parameters obtained by simulation. The experimental and simulation results were in good agreement.


2012 ◽  
Vol 572 ◽  
pp. 255-260 ◽  
Author(s):  
Qing Lei Meng ◽  
Bao Yu Wang ◽  
Lei Fu ◽  
Jing Zhou ◽  
Jian Guo Lin

The AA6111 aluminum alloy sheet is widely used in auto-body manufacture. It can make use of good plasticity under high temperature to form more complex parts by using the hot stamping. The influence of process parameters in hot stamping of AA6111 aluminum alloy sheet is investigated through numerical simulation in this paper, including blank holding force (BHF), friction coefficient, stamping velocity and initial forming temperature. Finally forming defects of numerical simulation are verified through the hot stamping experiments. The results show that it can effectively avoid wrinkling and fracture by controlling the BHF, good lubricant is in favor of forming and numerical simulation can accurately predict forming defects to guide the production.


2012 ◽  
Vol 455-456 ◽  
pp. 1122-1127
Author(s):  
Xiang Wu Jia ◽  
Shu Gen Hu

Taking example for U-shape sheet metal, the paper studies the forming and springback process with Dynaform, how much the springback influenced by several factors is studied, including die figure, stamping velocity, the stroke, the blank holder force and friction. Then a useful conclusion can be reached: Using die figure to optimize the technological parameters remarkably reduce the springback value, it provides a new method to control and solve the springback issue.


2010 ◽  
Vol 654-656 ◽  
pp. 902-905 ◽  
Author(s):  
Nho Kwang Park ◽  
Jin Gee Park ◽  
Sang Hyun Seo ◽  
Jeoung Han Kim

Titanium and its alloys are difficult-to-form materials due to limited slip system and plastic anisotropy. Titanium is also prone to change in color due to oxidation at high temperatures. It is thus advisable to conduct deep drawing of titanium and its alloys at temperatures below 600°C. In this study, the drawability of Ti-6Al-4V sheet is evaluated in respect to the process parameters such as forming temperature, forming speed, and blank holding force at elevated temperatures. It is shown that the limit drawing ratio (LDR) increases with increasing temperature, but varies insignificantly with forming speed. The development of residual stresses in the wall of drawn cups during deformation was evaluated.


2021 ◽  
Author(s):  
Huiting Wang ◽  
Jianfei Kong ◽  
Hongbo Pan ◽  
Jinxiu Fang ◽  
Xiaohui Shen

Abstract This study focus on the effects of the key process parameters during a modified hydrodynamic deep drawing utilizing a combined floating and static die cavity (HDDC). A two-stage hydraulic loading path is recommended in the novel process, and each stage of the hydraulic loading path is a linear loading path with an inflection point. The method to evaluate the wrinkle and forming dimension precision of the formed parts is introduced at first. Then the influence of the key parameters of the two-stage hydraulic loading path as well as the blank holder force on the dimension accuracy and surface quality of the formed parts was studied in detail. The results showed that the influence of the liquid pressure during the second stage is more significant than that in the first stage in hydrodynamic deep drawing utilizing a combined floating and static die cavity. The initial pressure of the second stage and the maximum pressure arriving moment during this stage have a significant impact on the dimensional accuracy of the formed parts, and the smaller initial pressure or the later the maximum pressure of the second stage arrives, the higher the accuracy of the formed part is. Similarly, the influence of the blank holder force in the second stage on the forming accuracy is more significant than that in the first stage.


2012 ◽  
Vol 579 ◽  
pp. 32-41
Author(s):  
Tung Sheng Yang ◽  
Jen Chuan Yeh ◽  
Sheng Yi Chang

This study applies the finite element method (FEM) in con-junction with an abductive network to predict springback’s angle during the U-shaped bending process with counter force. To verify the prediction of FEM simulation for springback, the experimental data are compared with the results of current simulation. Bending force, effective stress distribution and springback are investigated for different process parameters, such as profile radius of die, blank holder force and counter force of U-shaped bending process, by finite element analysis. The abductive network is then utilized to synthesize the data sets obtained from numerical simulations. Finally, prediction model is established for predicting springback’s angle under a suitable range of process parameters.


1993 ◽  
Vol 115 (1) ◽  
pp. 110-117 ◽  
Author(s):  
S. A. Majlessi ◽  
D. Lee

The deep drawing process of square and rectangular shells were investigated under different process conditions, and using two different drawing quality steels. The main objective was to identify the significance of some of the process parameters on the outcome of the drawing operation. The process parameters examined were shape and size of blank, the blank-holder force and frictional condition between blank and tooling. The results of this investigation were presented in terms of punch load, through thickness and in-plane strain distributions, formations of flange wrinkles and fracture, and the largest possible blank size that can be drawn successfully. Some of these experimental results were used to verify the validity of a simplified analytical model which was described in the first part of this paper.


2010 ◽  
Vol 97-101 ◽  
pp. 236-239
Author(s):  
Cheng Jun Han ◽  
Xin Bo Lin ◽  
Yan Bo Li

Experimental research on stamping of wrought aluminum alloy has been an important issue at home and abroad. In this paper, taking stamping of aluminum alloy hemispherical components for example, the effects of blank holder force (BHF) on stamping forming process of aluminum alloy are explored by methods of experiments and numerical simulation. Through experiments, the forming laws of hemispherical components are found out. The research shows that the BHF has significant effects on the quality of stamping components and reasonable BHF can greatly improve the formability of hemispherical components. Additionally, by applying simulation software in stamping, the development circle of product and its moulds can be shortened, and product quality and its competitiveness in the market can be improved.


Sign in / Sign up

Export Citation Format

Share Document