Liquid structure evolution of molten iron in blast furnace hearth

2019 ◽  
Vol 116 (6) ◽  
pp. 601
Author(s):  
Yong Deng ◽  
Kexin Jiao ◽  
Jianliang Zhang

The iron-carbon interfacial reaction between molten iron and carbon brick was carried out to simulate the working condition of blast furnace (BF) hearth. The carbon content in molten iron after the reaction was detected to be 5.0% which was almost saturated. XRD and SEM-EDS were conducted on the surface of polished rectangle iron before and after iron-carbon interfacial reaction. Fine striped graphite was observed in iron before iron-carbon interfacial reaction, a large amount of flake-like graphite was observed in iron after iron-carbon interfacial reaction. As a structure-sensitive physical property, the viscosity of molten iron was the macroscopic expression of its liquid structure. The liquid structure of molten iron (Fe-4.5%C, Fe-5.0%C) was measured through a high temperature X-ray diffractometer. The X-ray original diffraction intensity, the structure factor, the pair distribution function, the radial distribution function, and the main parameters of molten iron were obtained through the calculation. The presence of pre-peak in the structure factor indicated that there was a medium-range order in molten iron, some compounds or cluster of atoms might exist in molten iron, the structure model of atoms in liquid Fe-4.5%C was predicted through the structure parameters. The increase of carbon content after iron-carbon interfacial reaction was the essential reason for liquid structure evolution of molten iron in hearth.

2020 ◽  
Vol 993 ◽  
pp. 273-280
Author(s):  
Yan Wen Bai ◽  
Xiao Lin Zhao ◽  
Xiu Fang Bian ◽  
Kai Kai Song ◽  
Yan Zhao

The liquid local structure of Au50Cu50 solid solution was detected by high-temperature X-ray diffraction experiment and Reverse Monte Carlo (RMC) simulation. The clusters in the liquid Au50Cu50 alloy comprise the 12-coordinated polyhedron with Au center, which was the same as the clusters in the liquid pure Au. In the case of alloying, there was a high population of Au-Au bonds, and the local structure around Cu atoms was changed. In the case of solidification, the 12-coordinated clusters around Au atoms were preserved into the AuCu alloy, forming the disordered solid solution structure. The strong tendency for Cu-Cu bonds was weakened from 2.35 Å in the liquid to 2.81 Å in the solid solution, and the local structure around Cu atoms rearranges. It is shown that the liquid structure of the Au50Cu50 alloy plays a crucial role in the solid solution. Our findings elucidate that the disordered solid solution structure in AuCu alloy stems from the highly dominated 12-coordinated clusters associated with centered Au atom in the melt.


2011 ◽  
Vol 690 ◽  
pp. 222-225 ◽  
Author(s):  
Manickaraj Jeyakumar ◽  
Srirangam VS Prakash ◽  
Sumanth Shankar

The liquid structure of Al-Si hypoeutectic binary alloys with and without the addition of 0.04 wt.% Sr was characterized by diffraction experiments using a high energy X-Ray (Synchrotron) beam source. The diffraction data for all the alloys were obtained at various melt temperatures. Reverse Monte Carlo (RMC) analysis was carried out using the diffraction experimental data to quantify the partial pair distribution function (PPDF). Further, the partial pair distribution function and the liquid atomic structure information were used in a semi empirical model to evaluate the viscosity of these liquid alloys at various temperatures.


2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


Author(s):  
Ogün Baris Tapar ◽  
Jérémy Epp ◽  
Matthias Steinbacher ◽  
Jens Gibmeier

AbstractAn experimental heat treatment chamber and control system were developed to perform in-situ X-ray diffraction experiments during low-pressure carburizing (LPC) processes. Results from the experimental chamber and industrial furnace were compared, and it was proven that the built system is reliable for LPC experiments. In-situ X-ray diffraction investigations during LPC treatment were conducted at the German Electron Synchrotron Facility in Hamburg Germany. During the boost steps, carbon accumulation and carbide formation was observed at the surface. These accumulation and carbide formation decelerated the further carbon diffusion from atmosphere to the sample. In the early minutes of the diffusion steps, it is observed that cementite content continue to increase although there is no presence of gas. This effect is attributed to the high carbon accumulation at the surface during boost steps which acts as a carbon supply. During quenching, martensite at higher temperature had a lower c/a ratio than later formed ones. This difference is credited to the early transformation of austenite regions having lower carbon content. Also, it was noticed that the final carbon content dissolved in martensite reduced compared to carbon in austenite before quenching. This reduction was attributed to the auto-tempering effect.


2021 ◽  
Vol 23 (15) ◽  
pp. 9061-9064
Author(s):  
Ralph A. Wheeler ◽  
Emily E. Dalbey

Fitting X-ray structure factor lineshapes from experiment or simulation quantifies the nanoscale range of charge alternation in the title compound.


Sign in / Sign up

Export Citation Format

Share Document