An investigation on electrical discharge metal matrix coating of ZE41A magnesium alloy

2021 ◽  
Vol 118 (3) ◽  
pp. 314
Author(s):  
Uthirapathi Elaiyarasan ◽  
Vinaitheerthan Satheeshkumar ◽  
Chinnamuthu Senthilkumar

The present paper studied the experimental investigation on electrical discharge coating of ZE41A magnesium alloy (EDC) with tungsten carbide-copper (WC/Cu) powder metallurgy (PM) electrode. In order to attain the surface characteristics, three parameters were selected such as compaction load, current and pulse on time. Response characteristics such as material transfer rate (MTR) and surface roughness (Ra) were considered in this study. Central composite design in response surface methodology was applied to conduct experiments. Empirical models were developed for MTR and SR. AVOVA test was conducted to identify the most influence parameters. Additionally, optimized parameters were identified by response surface optimizer. It is observed that the current play a vital role in increasing the MTR and minimize the SR of the coated surface followed by compaction load and pulse on time. Various studies such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were carried out on the coated surface. Bulk mass deposition and bigger craters were observed in the surface coated with 150 MPa and 3A respectively.

2021 ◽  
Vol 63 (4) ◽  
pp. 360-367
Author(s):  
Uthirapathi Elaiyarasan ◽  
Vinaitheerthan Satheeshkumar ◽  
Chinnamuthu Senthilkumar

Abstract The present paper elucidates an experimental study on the surface modification of a ZE41 A magnesium alloy by electrical discharge coating (EDC) process with a tungsten carbide-copper (WC-Cu) powder metallurgy (PM) electrode. Investigated EDC parameters were compaction load, current and pulse on time. Measurement of coating characteristics such as material transfer rate (MTR) and surface roughness (Ra) were undertaken on the coated workpiece. As the design of experiment, response surface methodology was applied and analysis of variance (ANOVA) test was completed to study the influence of process parameters. Mathematical models were developed for coating characteristics to optimize the parameters. In this study, the reliability of the regression model is considered satisfactory with a value larger than 99 %. It was found from the study that the current plays a vital role in increasing the material transfer rate and minimizing the surface roughness of the coated surface followed by compaction load and pulse on time. Various studies such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were carried out to determine the characteristics of the coated layer. These analyses confirmed the presence of the electrode materials in the coated surface.


Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Abdul Azeez Abdu Aliyu ◽  
Jafri Mohd Rohani ◽  
Ahmad Majdi Abdul Rani ◽  
Hamidon Musa

In recent years, researchers have demonstrated increases interest in studies involving silicon carbide (SiC) materials due to several industrial applications. Extreme hardness and high brittleness properties of SiC make the machining of such material very difficult, time consuming and costly. Electrical discharge machining (EDM) has been regarded as the most viable method for the machining of SiC. The mechanism of EDM process is complex. Researchers have acknowledged a challenge in generating a model that accurately describes the correlation between the input parameters and the responses. This paper reports the study on parametric optimization of siliconized silicon carbide (SiSiC) for the following quality responses; material removal rate (MRR), tool wear ratio (TWR) and surface roughness (Ra). The experiments were planned using Face centered central composite design. The models which related MRR, TWR and Ra with the most significant factors such as discharge current (Ip), pulse-on time (Ton), and servo voltage (Sv) were developed. In order to develop, improve and optimize the models response surface methodology (RSM) was used. Non-linear models were proposed for MRR and Ra while linear model was proposed for TWR. The margin of error between predicted and experimental values of MRR, TWR and Ra are found within 6.7, 5.6 and 2.5% respectively. Thus, the excellent reproducibility of this experimental study is confirmed, and the models developed for MRR, TWR and Ra are justified to be valid by the confirmation tests.


Author(s):  
Bülent Ekmekci ◽  
Hamidullah Yaşar ◽  
Nihal Ekmekci

Added powders in a dielectric medium substantially influence the features of electrical discharges due to altered interelectrode conditions during the electrical discharge machining (EDM) process. The main discharge channel is disturbed due to the added powders in dielectric liquid and leads formations of secondary discharges. Such altered discharge conditions generate a unique topography on the machined surface and consequent subsurface microstructure beneath it. Ti6Al4V work material machined using SiC powder mixing in de-ionized water for an extensive set of pulse-on duration and pulse currents. Then, different forms of secondary discharges were identified from the resultant surface features and corresponding subsurface microstructures. The results pointed out that generation of unevenly separated secondary discharges increased the material transfer rate from the powder mixed dielectric liquid to the machined surface by means of the decomposed ions in the plasma channel. Complete separation of the main discharge channel into evenly distributed secondary discharges is possible under specific machining conditions that suggested minimal deformation of the machined surface regarding microcracks, roughness, and heat affected layer thickness. Under such machining conditions, another means of material transfer mechanism is activated that lead a powder particle build-up process on the machined surface. Consequently, five different discharge forms were proposed to describe the resultant surface topographies and subsurface microstructures. The material migration phenomena and the mechanisms are discussed in relation to the pulse-on time and pulse current.


2014 ◽  
Vol 808 ◽  
pp. 19-33 ◽  
Author(s):  
Sanjeev Kumar ◽  
Rupinder Singh ◽  
Ajay Batish ◽  
T.P. Singh

The present experimental study has been focused to evaluate surface characteristics of cryogenically-treated (shallow/deep) tool-electrodes using powder mixed electric discharge machining. Due to the continuously growing demand of complex and precise parts, tool-electrodes have its own importance, because quality of the machined parts depends upon the surface quality of electrode. On the analogy, eighteen experiments were performed based on L18orthogonal array of Taguchi’s methodology, which consist eight input parameters. Analysis of variance (ANOVA) was employed to designate the level of significance of input parameters. Electrode material has maximum influence followed by the current and pulse on-time on electrode finish. The combination of optimum factor’s level of identified parameters was determined using Taguchi’s technique for single response. Confirmation experiments were conducted using suggested optimal parameters with its respective level to minimize the tool-electrode surface roughness. Surface characteristics of tool-electrodes were analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive Spectrograph (EDS) followed by X-ray diffraction (XRD) on selected samples. The results exposed that significant material transfer from workpiece and powder mixed dielectric fluid in compound form on the tool surface.


2019 ◽  
Vol 8 (3) ◽  
pp. 5790-5794

Electrical Discharge Machine (EDM) is the process of designing the material and including complex structure using electrical discharge. Many research has been carried out in the EDM using different materials to increase Material Removal Rate (MRR), decrease Electrode Wear Rate (EWR) and Surface Roughness (SR). The various optimization techniques are applied to identify the parameter settings to increase MRR. In this research, the EDM process is conducted using the material of AZ 31 Magnesium alloy with hydrothermal treatment to reduce the MRR. The Taguchi method is applied to identify the optimal parameter for the EDM process to minimize the MRR, EWR and SR. The optimal value of the method is obtained as peak current of 55 A, voltage of 220 V, pulse on-time of 16 µs, and the pulse off-time of 512 µs.


Reaction-bonded silicon carbide (RB-SiC) is widely used as moulding dies material in many industries thanks to its excellent properties. Nevertheless, because of its high hardness and brittleness, it is extremely hard to be machined with high accuracy and good surface finish. Therefore, electrical discharge machining (EDM) has been chosen as an alternative method to machine the RB-SiC. In the present study, an experimental investigation has been conducted to optimize and validate the EDM parameters on the MRR and EWR of low conductivity RB-SiC in EDM. The new Cu – 1.0 wt. % CNF composite electrode that fabricated via powder metallurgy (PM) process was used as the electrode. The experiments were systematically conducted by face-cubic centre (FCC) approach of response surface methodology (RSM). The mathematical models for MRR and EWR were developed in this study. In addition, analysis of variance (ANOVA) was also figured out to check the significance of the models. Three experiments were conducted as the confirmation test to determine the error percentage of MRR and EWR. Based on the results, only 3.06% and 3.93% errors were determined for both MRR and EWR, respectively. The optimum conditions for multi responses (MRR and EWR) were found to be at a current of 6A, voltage of 22V, and pulse on-time of 12µs. The findings of this study provide an important reference to the manufacturing industries, especially mould and die industry.


Author(s):  
Pinal Rana ◽  
Divyanshu Bhartiya ◽  
Meinam Annebushan Singh ◽  
Deepak Marla

Abstract Recent investigations on the fabrication of ultra-thin silicon (Si) wafers using wire-electrical discharge machining (wire-EDM) were observed to possess some inherent limitations. This includes severe thermal damage, kerf-loss, and low slicing rate, which could be detrimental towards realizing actual practical applications. The extent of thermal damage, kerf-loss, and slicing rate largely depends on the process parameters such as open voltage (OV), servo voltage (SV), and pulse on-time (Ton). Therefore, choosing the optimal parameters that pertain to minimum thermal damage and kerf-loss while maintaining a higher slicing rate is the key to further excel in the fabrication of Si wafers using wire-EDM. Therefore, the present study is an effort to analyze and identify the optimal parameters that relate to the most effective Si slicing in wire-EDM. A central composite design (CCD) based response surface methodology (RSM) was used for optimizing the process parameters. The capability to slice Si wafers in wire-EDM was observed to be highly influenced by the discharge energy, which had a positive impact on the overall responses. The severity of thermal damages was observed to be mainly dominated by the variation in open voltage and Ton due to the high diffusion of thermal energy into the workpiece, which led to intense melting and subsequent re-solidification. The parametric optimization resulted in OV = 84.32 V, SV = 42.98 V and Ton = 0.62 μs as the most feasible parameter that relates to comparatively high slicing rate (0.65 mm/min), low kerf-loss (280 μm) and thermal damage (18 μm) for a given machine. In general, with a decrease in spark energy slicing rate and thermal damage decreases whereas, kerf-loss increases. When spark energy decreases by 83%, there is a nearly 55% decrease in slicing rate and thermal damage and a 10% increase in kerf-loss.


2016 ◽  
Vol 23 (2) ◽  
pp. 145-154
Author(s):  
V. Balasubramaniam ◽  
N. Baskar ◽  
Chinnaiyan Sathiya Narayanan

AbstractThis work presents the multiobjective optimization of machining parameters during the electrical discharge machining (EDM) of aluminum (Al)-silicon carbide (SiC) metal matrix composites (MMC). The process parameters considered were current, pulse on-time, dielectric flushing pressure, and SiC particles. A copper rod was used as an electrode. An Al-SiC MMC with Al 6061 as matrix and SiC particles having three different sizes (i.e., 15, 25, and 40 μm) were used as workpieces. The experiments were planned using design of experiments through response surface methodology (RSM). The mathematical models were developed to predict the better performance measures such as the material removal rate (MRR), electrode wear rate (EWR), surface roughness (SR), and cylindricity (CY). The desirability approach in RSM was performed for optimization. It was found that the MRR increases with increasing peak current, pulse on-time, flushing pressure, and particle size. The EDM parameters are to be analyzed for the MRR, EWR, SR, and CY. The best one is proposed for validation.


Sign in / Sign up

Export Citation Format

Share Document