scholarly journals Cortical-inspired image reconstruction via sub-Riemannian geometry and hypoelliptic diffusion

2018 ◽  
Vol 64 ◽  
pp. 37-53
Author(s):  
Ugo Boscain ◽  
Roman Chertovskih ◽  
Jean-Paul Gauthier ◽  
Dario Prandi ◽  
Alexey Remizov

In this paper we review several algorithms for image inpainting based on the hypoelliptic diffusion naturally associated with a mathematical model of the primary visual cortex. In particular, we present one algorithm that does not exploit the information of where the image is corrupted, and others that do it. While the first algorithm is able to reconstruct only images that our visual system is still capable of recognize, we show that those of the second type completely transcend such limitation providing reconstructions at the state-of-the-art in image inpainting. This can be interpreted as a validation of the fact that our visual cortex actually encodes the first type of algorithm.

Author(s):  
Joel Dapello ◽  
Tiago Marques ◽  
Martin Schrimpf ◽  
Franziska Geiger ◽  
David D. Cox ◽  
...  

AbstractCurrent state-of-the-art object recognition models are largely based on convolutional neural network (CNN) architectures, which are loosely inspired by the primate visual system. However, these CNNs can be fooled by imperceptibly small, explicitly crafted perturbations, and struggle to recognize objects in corrupted images that are easily recognized by humans. Here, by making comparisons with primate neural data, we first observed that CNN models with a neural hidden layer that better matches primate primary visual cortex (V1) are also more robust to adversarial attacks. Inspired by this observation, we developed VOneNets, a new class of hybrid CNN vision models. Each VOneNet contains a fixed weight neural network front-end that simulates primate V1, called the VOneBlock, followed by a neural network back-end adapted from current CNN vision models. The VOneBlock is based on a classical neuroscientific model of V1: the linear-nonlinear-Poisson model, consisting of a biologically-constrained Gabor filter bank, simple and complex cell nonlinearities, and a V1 neuronal stochasticity generator. After training, VOneNets retain high ImageNet performance, but each is substantially more robust, outperforming the base CNNs and state-of-the-art methods by 18% and 3%, respectively, on a conglomerate benchmark of perturbations comprised of white box adversarial attacks and common image corruptions. Finally, we show that all components of the VOneBlock work in synergy to improve robustness. While current CNN architectures are arguably brain-inspired, the results presented here demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in ImageNet-level computer vision applications.


1998 ◽  
Vol 4 (4) ◽  
pp. 227-230 ◽  
Author(s):  
Tirin Moore ◽  
Hillary R. Rodman ◽  
Charles G. Gross

The visual function that survives damage to the primary visual cortex (V1) in humans is often unaccompanied by awareness. This type of residual vision, called “blindsight,” has raised considerable interest because it implies a separation of conscious from unconscious vision mechanisms. The monkey visual system has proven to be a useful model in elucidating the possible neural mechanisms of residual vision and blindsight in humans. Clear similarities, however, between the phenomenology of human and monkey residual vision have only recently become evident. This article summarizes parallels between residual vision in monkeys and humans with damage to V1. These parallels Include the tendency of the remaining vision to require forced-choice testing and the fact that more robust residual vision remains when V1 damage is sustained early in life. NEUROSCIENTIST 4:227–230


2019 ◽  
Author(s):  
Kevin A. Murgas ◽  
Ashley M. Wilson ◽  
Valerie Michael ◽  
Lindsey L. Glickfeld

AbstractNeurons in the visual system integrate over a wide range of spatial scales. This diversity is thought to enable both local and global computations. To understand how spatial information is encoded across the mouse visual system, we use two-photon imaging to measure receptive fields in primary visual cortex (V1) and three downstream higher visual areas (HVAs): LM (lateromedial), AL (anterolateral) and PM (posteromedial). We find significantly larger receptive field sizes and less surround suppression in PM than in V1 or the other HVAs. Unlike other visual features studied in this system, specialization of spatial integration in PM cannot be explained by specific projections from V1 to the HVAs. Instead, our data suggests that distinct connectivity within PM may support the area’s unique ability to encode global features of the visual scene, whereas V1, LM and AL may be more specialized for processing local features.


Stroke ◽  
2001 ◽  
Vol 32 (suppl_1) ◽  
pp. 334-334
Author(s):  
Gereon Nelles ◽  
Guido Widmann ◽  
Joachim Esser ◽  
Anette Meistrowitz ◽  
Johannes Weber ◽  
...  

102 Introduction: Restitution of unilateral visual field defects following occipital cortex lesions occurs rarely. Partial recovery, however, can be observed in patients with incomplete lesion of the visual cortex. Our objective was to study the neuroplastic changes in the visual system that underlie such recovery. Methods and Results: Six patients with a left PCA-territory cortical stroke and 6 healthy control subjects were studied during rest and during visual stimulation using a 1.5 T fMRI with a 40 mT gradient. Visual stimuli were projected with a laptop computer onto a 154 x 115 cm screen, placed 90 cm in front of the gantry. Subjects were asked to fixate a red point in the center of the screen during both conditions. During stimulation, a black-and-white checkerboard pattern reversal was presented in each hemifield. For each side, 120 volumes of 48 contiguous axial fMRI images were obtained during rest and during hemifield stimulation in alternating order (60 volumes for each condition). Significant differences of rCBF between stimulation and rest were assessed as group analyses using statistical parametric mapping (SPM 99; p<0.01, corrected for multiple comparison). In controls, strong increases of rCBF (Z=7.6) occurred in the contralateral primary visual cortex V1 (area 17) and in V3a (area 18) and V5 (area 19). No differences were found between the right and left side in controls. During stimulation of the unaffected (left) visual field in hemianopic patients, activation occurred in contralateral V1, but the strongest increases of rCBF (Z>10) were seen in contralateral V3a (area 18) and V5 (area 19). During stimulation of the hemianopic (right) visual field, no activation was found in the primary visual cortex of either hemisphere. The most significant activation (Z=9.2) was seen in the ipsilateral V3a and V5 areas, and contralateral (left) V3a. Conclusions: Partial recovery from hemianopia is associated with strong ipsilateral activation of the visual system. Processing of visual stimuli in the hemianopic side spares the primary visual cortex and may involve recruitment of neurons in ipsilateral (contralesional) areas V3a and V5.


2016 ◽  
Vol 23 (5) ◽  
pp. 529-541 ◽  
Author(s):  
Sara Ajina ◽  
Holly Bridge

Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system.


2014 ◽  
pp. 95-102
Author(s):  
Elena Pyatikop

This publication describes the modeling results of knowledge of cognitive psychology about the primary processing in the visual system to analyze the images in purpose to determine the elements of the text. Processing images at the level of primary visual cortex formalized using fuzzy sets.


2019 ◽  
Author(s):  
Guido Maiello ◽  
Manuela Chessa ◽  
Peter J. Bex ◽  
Fabio Solari

AbstractThe human visual system is foveated: we can see fine spatial details in central vision, whereas resolution is poor in our peripheral visual field, and this loss of resolution follows an approximately logarithmic decrease. Additionally, our brain organizes visual input in polar coordinates. Therefore, the image projection occurring between retina and primary visual cortex can be mathematically described by the log-polar transform. Here, we test and model how this space-variant visual processing affects how we process binocular disparity, a key component of human depth perception. We observe that the fovea preferentially processes disparities at fine spatial scales, whereas the visual periphery is tuned for coarse spatial scales, in line with the naturally occurring distributions of depths and disparities in the real-world. We further show that the visual field integrates disparity information across the visual field, in a near-optimal fashion. We develop a foveated, log-polar model that mimics the processing of depth information in primary visual cortex and that can process disparity directly in the cortical domain representation. This model takes real images as input and recreates the observed topography of disparity sensitivity in man. Our findings support the notion that our foveated, binocular visual system has been moulded by the statistics of our visual environment.Author summaryWe investigate how humans perceive depth from binocular disparity at different spatial scales and across different regions of the visual field. We show that small changes in disparity-defined depth are detected best in central vision, whereas peripheral vision best captures the coarser structure of the environment. We also demonstrate that depth information extracted from different regions of the visual field is combined into a unified depth percept. We then construct an image-computable model of disparity processing that takes into account how our brain organizes the visual input at our retinae. The model operates directly in cortical image space, and neatly accounts for human depth perception across the visual field.


2016 ◽  
Author(s):  
Inbal Ayzenshtat ◽  
Jesse Jackson ◽  
Rafael Yuste

AbstractThe response properties of neurons to sensory stimuli have been used to identify their receptive fields and functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the response properties of neurons to various orientations and spatial frequencies. Surprisingly, we found that the orientation selectivity of neurons actually depends on the spatial frequency of the stimulus. This dependence can be easily explained if one assumed spatially asymmetric Gabor-type receptive fields. We propose that receptive fields of neurons in layer 2/3 of visual cortex are indeed spatially asymmetric, and that this asymmetry could be used effectively by the visual system to encode natural scenes.Significance StatementIn this manuscript we demonstrate that the orientation selectivity of neurons in primary visual cortex of mouse is highly dependent on the stimulus SF. This dependence is realized quantitatively in a decrease in the selectivity strength of cells in non-optimum SF, and more importantly, it is also evident qualitatively in a shift in the preferred orientation of cells in non-optimum SF. We show that a receptive-field model of a 2D asymmetric Gabor, rather than a symmetric one, can explain this surprising observation. Therefore, we propose that the receptive fields of neurons in layer 2/3 of mouse visual cortex are spatially asymmetric and this asymmetry could be used effectively by the visual system to encode natural scenes.Highlights–Orientation selectivity is dependent on spatial frequency.–Asymmetric Gabor model can explain this dependence.


2020 ◽  
Author(s):  
Trisha Marie Zintel ◽  
John J. Ely ◽  
Mary Ann Raghanti ◽  
William D. Hopkins ◽  
Patrick R. Hof ◽  
...  

Abstract Background : Primate species differ drastically from most other mammals in how they visually perceive their environments, which is important for foraging, predator avoidance, and detection of social cues. Although it is well established that primates display diversity in color vision and various ecological specializations, it is not understood how visual system characteristics and ecological adaptations may be associated with gene expression levels within the primary visual cortex (V1). Results : We performed RNA-Seq on V1 tissue samples from 28 individuals, representing 13 species of anthropoid primates, including hominoids, cercopithecoids, and platyrrhines. We explored trait-dependent differential expression (DE) by contrasting species with different visual system phenotypes and ecological traits. Between 4-25% of genes were determined to be differentially expressed in primates that varied in type of color vision (trichromatic or polymorphic di/trichromatic), habitat use (arboreal or terrestrial), group size (large or small), and primary diet (frugivorous, folivorous, or omnivorous). DE analyses revealed that humans and chimpanzees showed the most marked differences between any two species, despite the fact that they are only separated by 6-8 million years of independent evolution. Pathway enrichment analyses of DE genes demonstrated that changes in cellular metabolic pathways (e.g. glycolysis) contribute to altered gene expression in primate V1 more than neuron-specific processes (e.g. synaptic signaling). The exception to this trend is between human and chimpanzee, which exhibited DE for a number of processes related to cholinergic and GABAergic synaptic signaling. Conclusions : Our data significantly expand the number of primate species for which V1 expression data exists. These results show a combination of species-specific and trait-dependent differences in the evolution of gene expression in primate V1. We also show that human-specific changes in brain gene expression extend to the primary visual cortex in a manner similar to that reported of other brain regions.


Sign in / Sign up

Export Citation Format

Share Document