scholarly journals Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data

2020 ◽  
Vol 10 ◽  
pp. 23 ◽  
Author(s):  
Mike Lockwood ◽  
Mathew J. Owens ◽  
Luke A. Barnard ◽  
Carl Haines ◽  
Chris J. Scott ◽  
...  

We study the semi-annual variation in geomagnetic activity, as detected in the geomagnetic indices am, aaH, AL, Dst and the four aσ indices derived for 6-hour MLT sectors (around noon, dawn, dusk and midnight). For each we compare the amplitude of the semi-annual variation, as a fraction of the overall mean, to that of the corresponding variation in power input to the magnetosphere, Pα, estimated from interplanetary observations. We demonstrate that the semi-annual variation is amplified in the geomagnetic data compared to that in Pα, by a factor that is different for each index. The largest amplification is for the Dst index (factor ~ 10) and the smallest is for the aσ index for the noon MLT sector (aσ-noon, factor ≈ 1.1). By sorting the data by the prevailing polarity of the Y-component (dawn-dusk) of the Interplanetary Magnetic Field (IMF) in the Geocentric Solar Equatorial (GSEQ) reference frame, we demonstrate that the Russell-McPherron (R-M) effect, in which a small southward IMF component in GSEQ is converted into geoeffective field by Earth’s dipole tilt, is a key factor for the semi-annual variations in both Pα and geomagnetic indices. However, the variability in the southward component in the IMF in the GSEQ frame causes more variability in power input to the magnetosphere Pα than does the R-M effect, by a factor of more than two. We show that for increasingly large geomagnetic disturbances, Pα delivered by events of large southward field in GSEQ (known to often be associated with coronal mass ejections) becomes the dominant driver and the R-M effect declines in importance and often acts to reduce geoeffectiveness for the most southward IMF in GSEQ: the semi-annual variation in large storms therefore suggests either preconditioning of the magnetosphere by average conditions or an additional effect at the equinoxes. We confirm that the very large R-M effect in the Dst index is because of a large effect at small and moderate activity levels and not in large storms. We discuss the implications of the observed “equinoctial” time-of-year (F) – Universal Time (UT) pattern of geomagnetic response, the waveform and phase of the semi-annual variations, the differences between the responses at the June and December solstices and the ratio of the amplitudes of the March and September equinox peaks. We also confirm that the UT variation in geomagnetic activity is a genuine global response. Later papers will analyse the origins and implications of the effects described.

2020 ◽  
Vol 10 ◽  
pp. 30
Author(s):  
Mike Lockwood ◽  
Kathryn A. McWilliams ◽  
Mathew J. Owens ◽  
Luke A. Barnard ◽  
Clare E. Watt ◽  
...  

This is the second in a series of papers that investigate the semi-annual, annual and Universal Time (UT) variations in the magnetosphere. We present a varied collection of empirical results that can be used to constrain theories and modelling of these variations. An initial study of two years’ data on transpolar voltage shows that there is a semi-annual variation in magnetospheric flux circulation; however, it is not as large in amplitude as that in geomagnetic activity, consistent with the latter showing a non-linear (quadratic) variation with transpolar voltage. We find that during the persistent minimum of the UT variation in geomagnetic activity, between about 2 and 10 UT, there is also a persistent decrease in observed transpolar voltage, which may be, in part, caused by a decrease in reconnection voltage in the nightside cross-tail current sheet. We study the response of geomagnetic activity to estimated power input into the magnetosphere using interplanetary data from 1995 onwards, an interval for which the data are relatively free of data gaps. We find no consistent variation in the response delay with time-of-year F and, using the optimum lag, we show that the patterns of variation in F-year spectrograms are very similar for geomagnetic activity and power input into the magnetosphere, both for average values and for the occurrence of large events. The Russell–McPherron (R–M) mechanism is shown to be the central driver of this behaviour. However, the (R–M) effect on power input into the magnetosphere is small and there is a non-linear amplification of the semi-annual variation in the geomagnetic response, such that a very small asymmetry in power input into the magnetosphere Pα between the “favourable” and “unfavourable” polarities of the IMF BY component generates a greatly amplified geomagnetic response. The analysis strongly indicates that this amplification is associated with solar wind dynamic pressure and its role in squeezing the near-Earth tail and so modulating the storage and release of energy extracted from the solar wind. In this paper, we show that the equinoctial pattern is found in the residuals of fits of Pα to the am index and that the amplitude of these equinoctial patterns in the am fit residuals increases linearly with solar wind dynamic pressure. Similarly, the UT variation in am is also found in these fit residuals and also increases in amplitude with solar wind dynamic pressure.


2021 ◽  
Vol 39 (5) ◽  
pp. 929-943
Author(s):  
Adriane Marques de Souza Franco ◽  
Rajkumar Hajra ◽  
Ezequiel Echer ◽  
Mauricio José Alves Bolzan

Abstract. Seasonal features of geomagnetic activity and their solar-wind–interplanetary drivers are studied using more than five solar cycles of geomagnetic activity and solar wind observations. This study involves a total of 1296 geomagnetic storms of varying intensity identified using the Dst index from January 1963 to December 2019, a total of 75 863 substorms identified from the SuperMAG AL/SML index from January 1976 to December 2019 and a total of 145 high-intensity long-duration continuous auroral electrojet (AE) activity (HILDCAA) events identified using the AE index from January 1975 to December 2017. The occurrence rates of the substorms and geomagnetic storms, including moderate (-50nT≥Dst>-100nT) and intense (-100nT≥Dst>-250nT) storms, exhibit a significant semi-annual variation (periodicity ∼6 months), while the super storms (Dst≤-250 nT) and HILDCAAs do not exhibit any clear seasonal feature. The geomagnetic activity indices Dst and ap exhibit a semi-annual variation, while AE exhibits an annual variation (periodicity ∼1 year). The annual and semi-annual variations are attributed to the annual variation of the solar wind speed Vsw and the semi-annual variation of the coupling function VBs (where V = Vsw, and Bs is the southward component of the interplanetary magnetic field), respectively. We present a detailed analysis of the annual and semi-annual variations and their dependencies on the solar activity cycles separated as the odd, even, weak and strong solar cycles.


2012 ◽  
Vol 19 (6) ◽  
pp. 667-673 ◽  
Author(s):  
P. De Michelis ◽  
G. Consolini ◽  
R. Tozzi

Abstract. Complexity and multi-scale are very common properties of several geomagnetic time series. On the other hand, it is amply demonstrated that scaling properties of geomagnetic time series show significant changes depending on the geomagnetic activity level. Here, we study the multi-scale features of some large geomagnetic storms by applying the empirical mode decomposition technique. This method, which is alternative to traditional data analysis and is designed specifically for analyzing nonlinear and nonstationary data, is applied to long time series of Sym-H index relative to periods including large geomagnetic disturbances. The spectral and scaling features of the intrinsic mode functions (IMFs) into which Sym-H time series can be decomposed, as well as those of the Sym-H time series itself, are studied considering different geomagnetic activity levels. The results suggest an increase of dynamical complexity and multi-scale properties for intermediate geomagnetic activity levels.


2021 ◽  
Author(s):  
Adriane Marques de Souza Franco ◽  
Rajkumar Hajra ◽  
Ezequiel Echer ◽  
Mauricio José Alves Bolzan

Abstract. Seasonal features of geomagnetic activity and their solar wind-interplanetary drivers are studied using more than 5 solar cycles of geomagnetic activity and solar wind observations. This study involves a total of 1239 geomagnetic storms of varying intensity identified using the Dst index from January 1963 to December 2019, a total of 75863 substorms identified from the SML index from January 1976 to December 2019, a total of 145 high-intensity long-duration continuous auroral electrojet (AE) activity (HILDCAA) events identified using the AE index from January 1975 to December 2017. The occurrence rates of the substorms, geomagnetic storms, including moderate (−50 nT ≥ Dst > −100 nT) and intense (−100 nT ≥ Dst > −250 nT), exhibit a significant semi-annual variation (periodicity ~ 6 months), while the super storms (Dst ≤ −250 nT) and HILDCAAs do not exhibit any clear seasonal feature. The geomagnetic activity indices Dst and ap exhibit a semi-annual variation while AE exhibits an annual variation (periodicity ~ 1 year). The annual and semi-annual variations are found to be driven by the annual variation of the solar wind speed Vsw and the semi-annual variation of the coupling function V Bs (where V = Vsw, and Bs is the southward component of the interplanetary magnetic field), respectively. We present a detailed analysis of the annual and semi-annual variations and their dependencies on the solar activity cycles separated as the odd, even, weak and strong solar cycles.


2019 ◽  
Vol 5 (1) ◽  
pp. 82-89
Author(s):  
Артем Гололобов ◽  
Artem Gololobov ◽  
Иннокентий Голиков ◽  
Innokentiy Golikov

The electron temperature enhancement is known to occur in the main ionospheric trough during geomagnetic disturbances. In this paper, we study fea-tures of the formation of the electron temperature (Te) enhancement in the subauroral ionosphere by comparing results of the numerical simulation with measurements of Te onboard the CHAMP satellite under moderate geomagnetic activity conditions. It is shown that depending on the terminator position and universal time (UT), the location of the enhanced Te regions in the subauroral ionosphere varies in different seasons. So, in winter ring-shaped and sickle-shaped regions can be formed, whereas during the equinox and summer periods sickle-shaped regions of different lengths and clarity are generally observed.


2019 ◽  
Vol 5 (1) ◽  
pp. 62-68
Author(s):  
Артем Гололобов ◽  
Artem Gololobov ◽  
Иннокентий Голиков ◽  
Innokentiy Golikov

The electron temperature enhancement is known to occur in the main ionospheric trough during geomagnetic disturbances. In this paper, we study fea-tures of the formation of the electron temperature (Te) enhancement in the subauroral ionosphere by comparing results of the numerical simulation with measurements of Te onboard the CHAMP satellite under moderate geomagnetic activity conditions. It is shown that depending on the terminator position and universal time (UT), the location of the enhanced Te regions in the subauroral ionosphere varies in different seasons. So, in winter ring-shaped and sickle-shaped regions can be formed, whereas during the equinox and summer periods sickle-shaped regions of different lengths and clarity are generally observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Alessio Pignalberi ◽  
Roberta Tozzi ◽  
Igino Coco ◽  
...  

AbstractThe present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE < 50 nT) and active (AE > 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude—magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy.


2021 ◽  
Vol 6 (3) ◽  
pp. 56
Author(s):  
Mark A. Faghy ◽  
Kirsty E. Armstrong-Booth ◽  
Vicki Staples ◽  
Micheal J. Duncan ◽  
Clare M. P. Roscoe

Interventions to increase physical activity in children have adopted broad approaches and achieved varying success. There is a need to adopt approaches underpinned with a theoretical basis. Accordingly, the aim here was to implement and evaluate a 12-week intervention designed using the concepts of the COM-B model to determine the effect this has on physical activity levels. One hundred and forty-seven school-age children (mean age 8.9 ± 1.3 years) took part in a 12-week program delivered in a school setting. Topics included physical activity, healthy eating, sleep quality and reducing screen time/sedentary activities when not in school. A sample of participants wore a wrist-worn accelerometer for seven days pre-and post-intervention (N = 11). The physical activity frequency was unchanged (2.9 ± 1.0 AU) when compared with post-intervention values (3.1 ± 0.8 AU, mean increase 6.8 ± 3.7%, p > 0.05). Changes were observed in the daily consumption of fruit and vegetables (pre-intervention 44.6% vs. post-intervention 60.2%, p < 0.05). Sedentary time, light activity, moderate activity and vigorous activity were unchanged post-intervention (p > 0.05). There is a need to adopt a broader approach that incorporates a theoretical basis and considers the complex ways by which physical activity behaviours are influenced.


2009 ◽  
Vol 27 (5) ◽  
pp. 1909-1914 ◽  
Author(s):  
A. Yoshida

Abstract. Physical meaning of the equinoctial effect for semi-annual variation in geomagnetic activity is investigated based on the three-hourly am index and solar wind parameters. When the z component of the interplanetary magnetic field (IMF) in geocentric solar magnetospheric (GSM) coordinates is southward, am indices are well correlated with BsVx2, where Bs is the southward component of the IMF and Vx is the solar wind velocity in the sun-earth direction. The am-BsVx2 relationship, however, depends on the range of Vx2: the am in higher ranges of Vx2 tends to be larger than am in lower ranges of Vx2 for the same value of BsVx2 for both equinoctial and solstitial epochs. Using the data sets of the same Vx2 range, it is shown that distribution of points in the am-BsVx2 diagram at the solstitial epochs overlaps with that at the equinoctial epochs and the average am values in each BsVx2 bin in solstitial epochs are closely consistent with those in equinoctial epochs, if Vx2 for each point at solstices are reduced to Vx2sin2 (Ψ) where Ψ is the geomagnetic colatitude of the sub-solar point. Further, it is shown that monthly averages of the am index in the long period is well correlated with the values of sin2(ψ) for the middle day of each month. These findings indicate that the factor that contributes to the generation of geomagnetic disturbance is not the velocity of the solar wind, but the component of the solar wind velocity perpendicular to the dipole axis of the geomagnetic field. The magnitude of the perpendicular velocity component varies semi-annually even if the solar wind velocity remains constant, which is considered to be the long-missed key factor causing the equinoctial effect.


2018 ◽  
Vol 34 (1) ◽  
pp. 7-13
Author(s):  
Tina Smith ◽  
Sue Reeves ◽  
Lewis G. Halsey ◽  
Jörg Huber ◽  
Jin Luo

The aim of the current study was to compare bone loading due to physical activity between lean, and overweight and obese individuals. Fifteen participants (lower BMI group: BMI < 25 kg/m2, n = 7; higher BMI group: 25 kg/m2 < BMI < 36.35 kg/m2, n = 8) wore a tri-axial accelerometer on 1 day to collect data for the calculation of bone loading. The International Physical Activity Questionnaire (short form) was used to measure time spent at different physical activity levels. Daily step counts were measured using a pedometer. Differences between groups were compared using independent t-tests. Accelerometer data revealed greater loading dose at the hip in lower BMI participants at a frequency band of 0.1–2 Hz (P = .039, Cohen’s d = 1.27) and 2–4 Hz (P = .044, d = 1.24). Lower BMI participants also had a significantly greater step count (P = .023, d = 1.55). This corroborated with loading intensity (d ≥ 0.93) and questionnaire (d = 0.79) effect sizes to indicate higher BMI participants tended to spend more time in very light activity, and less time in light and moderate activity. Overall, participants with a lower BMI exhibited greater bone loading due to physical activity; participants with a higher BMI may benefit from more light and moderate level activity to maintain bone health.


Sign in / Sign up

Export Citation Format

Share Document