Starving the brain: Structural abnormalities and cognitive impairment in adolescents with anorexia nervosa

2001 ◽  
Vol 6 (2) ◽  
pp. 146-152 ◽  
Author(s):  
Debra K. Katzman ◽  
Bruce Christensen ◽  
Arlene R. Young ◽  
Robert B. Zipursky
2017 ◽  
Vol 41 (S1) ◽  
pp. S550-S550
Author(s):  
G. Fico ◽  
A.M. Monteleone ◽  
M. Nigro ◽  
G. Patriciello ◽  
U. Volpe ◽  
...  

IntroductionRecently, anorexia nervosa (AN) has been conceptualized as a reward-related disorder, and brain imaging studies have shown functional and structural abnormalities in areas of the brain involved in reward processes in both acute and recovered AN patients. However, the role of endogenous biochemical mediators, such as Ghrelin, in the modulation of reward processes has been poorly investigated in this eating disorder.ObjectivesHedonic eating, that is the consumption of food exclusively for pleasure and not to maintain energy homeostasis, is a useful paradigm to investigate the physiology of food-related reward.AimsWe assessed the Ghrelin response to food-related reward in symptomatic AN women in order to further explore the modulation of reward processes in this severe and debilitating disorder.MethodsPlasma levels of Ghrelin were measured in 7 underweight and 7 recently weight-restored satiated AN patients before and after the ingestion of a favorite (hedonic eating) and non-favorite (non-hedonic eating) food. Ghrelin responses were compared it that of previously studied healthy controls.ResultsWe found that in satiated underweight patients with AN plasma Ghrelin levels progressively decreased after the exposure and the consumption of both the favorite and non-favorite food whereas in satiated weight-restored AN patients and satiated healthy controls plasma Ghrelin concentrations significantly increased after the exposure to the favorite food and after eating it, but decreased after the non-favorite food.ConclusionsThese results suggest a derangement in the Ghrelin modulation of food-related pleasurable and rewarding feelings, which might sustain the reduced motivation toward food intake of acute AN patients.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


2020 ◽  
Vol 77 (4) ◽  
pp. 1609-1622
Author(s):  
Franziska Mathies ◽  
Catharina Lange ◽  
Anja Mäurer ◽  
Ivayla Apostolova ◽  
Susanne Klutmann ◽  
...  

Background: Positron emission tomography (PET) of the brain with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) is widely used for the etiological diagnosis of clinically uncertain cognitive impairment (CUCI). Acute full-blown delirium can cause reversible alterations of FDG uptake that mimic neurodegenerative disease. Objective: This study tested whether delirium in remission affects the performance of FDG PET for differentiation between neurodegenerative and non-neurodegenerative etiology of CUCI. Methods: The study included 88 patients (82.0±5.7 y) with newly detected CUCI during hospitalization in a geriatric unit. Twenty-seven (31%) of the patients were diagnosed with delirium during their current hospital stay, which, however, at time of enrollment was in remission so that delirium was not considered the primary cause of the CUCI. Cases were categorized as neurodegenerative or non-neurodegenerative etiology based on visual inspection of FDG PET. The diagnosis at clinical follow-up after ≥12 months served as ground truth to evaluate the diagnostic performance of FDG PET. Results: FDG PET was categorized as neurodegenerative in 51 (58%) of the patients. Follow-up after 16±3 months was obtained in 68 (77%) of the patients. The clinical follow-up diagnosis confirmed the FDG PET-based categorization in 60 patients (88%, 4 false negative and 4 false positive cases with respect to detection of neurodegeneration). The fraction of correct PET-based categorization did not differ between patients with delirium in remission and patients without delirium (86% versus 89%, p = 0.666). Conclusion: Brain FDG PET is useful for the etiological diagnosis of CUCI in hospitalized geriatric patients, as well as in patients with delirium in remission.


Author(s):  
Amteshwar Singh Jaggi

Aim: The aim of the present study is to explore the neuroprotective effects of remote ischemic preconditioning in long term cognitive impairment after global cerebral ischemia induced-vascular dementia in mice. Material and methods: The mice were subjected to global cerebral ischemia by occluding the bilateral common carotid arteries for 12 minutes followed by the 24 hours of the reperfusion. The remote ischemic preconditioning stimulus was delivered in the form of 4 cycles of ischemia/reperfusion for 5 minutes each. The cerebral ischemic injury induced-long term cognitive impairment-related learning and memory alterations was assessed using morris water maze, the motor performances of the animals were evaluated using rota-rod test and neurological severity score. The cerebral infract size of the brain were quantified using triphenyltetrazolium chloride staining. Results: Global cerebral ischemia causes long term memory impairment, decreases motor performances and increases the brain infract size in animals. The delivery of remote ischemic preconditioning stimulus significantly abolished the long-term cognitive impairment and ameliorates the motor performances as well as cerebral infract size in brain. Conclusion: The remote ischemic preconditioning mediates neuro protection against global cerebral ischemic injury induced long-term cognitive impairment.


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Arpita Chakraborty ◽  
Samir Kumar Praharaj ◽  
R. V. Krishnananda Prabhu ◽  
M. Mukhyaprana Prabhu

AbstractBackgroundMore than half portion of the brain is formed by lipids. They play critical roles in maintaining the brain's structural and functional components. Any dysregulation in these brain lipids can lead to cognitive dysfunction which are associated with neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, vascular dementia etc. Studies have linked lipids with cognitive impairment. But not much has been studied about the complex brain lipids which might play a pivotal role in cognitive impairment. This review aims to highlight the lipidomic profiles in patients with cognitive dysfunction.ResultsForty-five articles were reviewed. These studies show alterations in complex lipids such as sphingolipids, phospholipids, glycolipids and sterols in brain in various neurological disorders such as vascular dementia, Parkinson's and Alzheimer's disease. However, the classes of fatty acids in these lipids involved are different across studies.ConclusionsThere is a need for targeted lipidomics analysis, specifically including sphingolipids in patients with neurodegenerative disorders so as to improve diagnostics as well as management of these disorders.


2017 ◽  
Vol 74 ◽  
pp. 149-162 ◽  
Author(s):  
Qu Tian ◽  
Nathalie Chastan ◽  
Woei-Nan Bair ◽  
Susan M. Resnick ◽  
Luigi Ferrucci ◽  
...  

2006 ◽  
Vol 18 (5) ◽  
pp. 193-209 ◽  
Author(s):  
Richard J. Porter ◽  
Peter Gallagher

Background:New evidence is emerging regarding abnormalities of hypothalamic-pituitary-adrenal (HPA) axis function in subtypes of affective disorders. Adverse effects of HPA axis dysregulation may include dysfunction of monoaminergic transmitter systems, cognitive impairment and peripheral effects. Newer treatments specifically targeting the HPA axis are being developed.Objective:To review these developments focusing particularly on the glucocorticoid receptor (GR) antagonist mifepristone.Method:A selective review of the literature.Results:The function of GRs is increasingly being defined. The role of corticotrophin-releasing hormone (CRH) and dehydroepiandrosterone (DHEA) in the brain is also increasingly understood. HPA axis function is particularly likely to be abnormal in psychotic depression and bipolar disorder, and it is in these conditions that trials of the GR antagonist mifepristone are being focused. CRH antagonists and DHEA are also being investigated as potential treatments.Conclusion:Initial studies of mifepristone and other HPA-axis-targeting agents in psychotic depression and bipolar disorder are encouraging and confirmatory studies are awaited.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yue Tian ◽  
Ke-yan Chen ◽  
Li-dan Liu ◽  
Yun-xia Dong ◽  
Ping Zhao ◽  
...  

Objective. This study was aimed at investigating whether sevoflurane inhalation induced cognitive impairment in rats with a possible mechanism involved in the event. Methods. Thirty-two rats were randomly divided into four groups of normal saline (NS) + O2, NS + sevoflurane (sevo), amyloid-β peptide (Aβ) + O2, and Aβ + sevo. The rats in the four groups received bilateral intrahippocampus injections of NS or Aβ. The treated hippocampus was harvested after inhaling 30% O2 or 2.5% sevoflurane. Evaluation of cognitive function was performed by Morris water maze (MWZ) and an Aβ1–42 level was determined by ELISA. Protein and mRNA expressions were executed by immunohistochemical (IHC) staining, Western blotting, and qRT-PCR. Results. Compared with the NS-treated group, sevoflurane only caused cognitive impairment and increased the level of Aβ1–42 of the brain in the Aβ-treated group. Sevoflurane inhalation but not O2 significantly increased glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule (IBA)1 expression in Aβ-treated hippocampus of rats. Expression levels for Bcl-xL, caspase-9, receptor for advanced glycation end products (RAGE) and brain-derived neurotrophic factor (BDNF) were significantly different in quantification of band intensity between the rats that inhaled O2 and sevoflurane in Aβ-treated groups (all P<0.05). Interleukin- (IL-) 1β, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) mRNA expression increased after the rats inhaled sevoflurane in the Aβ-treated group (both P<0.01). There were no significant differences in the change of GFAP, IBA1, Bcl-xL, caspase-9, RAGE, BDNF, IL-1β, NF-κB, and iNOS in the NS + O2 and NS + sevo group (all P>0.05). Conclusion. Sevoflurane exacerbates cognitive impairment induced by Aβ1–40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2441-2452 ◽  
Author(s):  
Tomokazu Hata ◽  
Noriyuki Miyata ◽  
Shu Takakura ◽  
Kazufumi Yoshihara ◽  
Yasunari Asano ◽  
...  

Abstract Anorexia nervosa (AN) results in gut dysbiosis, but whether the dysbiosis contributes to AN-specific pathologies such as poor weight gain and neuropsychiatric abnormalities remains unclear. To address this, germ-free mice were reconstituted with the microbiota of four patients with restricting-type AN (gAN mice) and four healthy control individuals (gHC mice). The effects of gut microbes on weight gain and behavioral characteristics were examined. Fecal microbial profiles in recipient gnotobiotic mice were clustered with those of the human donors. Compared with gHC mice, gAN mice showed a decrease in body weight gain, concomitant with reduced food intake. Food efficiency ratio (body weight gain/food intake) was also significantly lower in gAN mice than in gHC mice, suggesting that decreased appetite as well as the capacity to convert ingested food to unit of body substance may contribute to poor weight gain. Both anxiety-related behavior measured by open-field tests and compulsive behavior measured by a marble-burying test were increased only in gAN mice but not in gHC mice. Serotonin levels in the brain stem of gAN mice were lower than those in the brain stem of gHC mice. Moreover, the genus Bacteroides showed the highest correlation with the number of buried marbles among all genera identified. Administration of Bacteroides vulgatus reversed compulsive behavior but failed to exert any substantial effect on body weight. Collectively, these results indicate that AN-specific dysbiosis may contribute to both poor weight gain and mental disorders in patients with AN.


Sign in / Sign up

Export Citation Format

Share Document