Relationships between a Load-velocity Profile and Sprint Performance in Butterfly Swimming

2020 ◽  
Vol 41 (07) ◽  
pp. 461-467 ◽  
Author(s):  
Tomohiro Gonjo ◽  
Ola Eriksrud ◽  
Filip Papoutsis ◽  
Bjørn Harald Olstad

AbstractThe purpose of this study was to establish the relationships between 50 m sprint swimming performance and variables acquired from a swimming load-velocity profile established by semi-tethered butterfly swimming. Twelve male elite swimmers participated in the present study and performed 50 m sprint and semi-tethered butterfly swimming with different loads. The mean velocity among all upper-limb cycles was obtained from the 50 m swimming (race velocity), and maximum load and velocity were predicted from the load-velocity profile established by the semi-tethered swimming test. There was a very large correlation (r=0.885, p<0.01) and a high intra-class correlation (0.844, p<0.001) between the race velocity and the predicted maximum velocity. Significant correlations were also observed between the predicted maximum load and the 50 m time as well as the race velocity (r=− 0.624 and 0.556, respectively, both p<0.05), which imply that an ability to achieve a large tethered swimming force is associated with 50 m butterfly performance. These results indicate that the load-velocity profile is a useful tool for predicting and assessing sprint butterfly swimming performance.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tomohiro Gonjo ◽  
Nikolai Njøs ◽  
Ola Eriksrud ◽  
Bjørn H. Olstad

The purpose of the present study was to establish relationships between sprint front crawl performance and a swimming load-velocity profile. Fourteen male national-level swimmers performed 50 m front crawl and semi-tethered swimming with three progressive loads. The 50 m performance was recorded with a multi-camera system, with which two-dimensional head displacement and the beginning of each arm-stroke motion were quantified. Forward velocity (V50m), stroke length (SL) and frequency (SF) were quantified for each cycle, and the mean value of all cycles, excluding the first and last cycles, was used for the analysis. From the semi-tethered swimming test, the mean velocity during three stroke cycles in mid-pool was calculated and plotted as a function of the external load, and a linear regression line expressing the relationship between the load and velocity was established for each swimmer. The intercepts between the established line and the axes of the plot were defined as theoretical maximum velocity (V0) and load (L0). Large to very large correlations were observed between V50m and all variables derived from the load-velocity profiling; L0 (R = 0.632, p = 0.015), L0 normalized by body mass (R = 0.743, p = 0.002), V0 (R = 0.698, p = 0.006), and the slope (R = 0.541, p &lt; 0.046). No significant relationships of SL and SL with V50m and the load-velocity variables were observed, suggesting that each swimmer has his own strategy to achieve the highest swimming velocity. The findings suggest that load-velocity profiling can be used to assess swimming-specific strength and velocity capabilities related to sprint front crawl performance.


2021 ◽  
Vol 23 (2) ◽  
pp. 57-63
Author(s):  
Marija Lazarevikj ◽  
◽  
Valentino Stojkovski ◽  
Viktor Iliev

In the technical practice, it is often necessary to measure or control the fluid flow rate in pipelines and channels. The velocity-area method requires a number of meters located at specified points in a suitable cross-section of closed conduits. Simultaneous measurements of local mean velocity with the meters are integrated over the gauging section to provide the discharge. In this paper, three approaches of this method are applied on a rectangular closed conduit to determine the air flow rate with integration techniques used to compute the discharge assume velocity distributions that closely approximate known laws, especially in the neighborhood of solid boundaries. For this purpose, meters for velocity were 7 Pitot tubes placed vertically in predefined measurement points covering the conduit height, and moved horizontally along the conduit width. The position of the Pitot tubes along the conduit width was monitored and controlled by a linear displacement transducer. Pressure is measured using digital sensors. The first technique for determination of air flow rate is on basis of fixed (stopping) measuring points across the conduit width as averaged values of local velocity, the second one is semi continual measurement of velocity profile by applying interpolation between the average local velocity on fixed (stopping) points and measured velocity in the movement between two positions, and the third is by continuously moving the Pitot tubes without stopping. The results of the three techniques are calculated and presented using different types of software. Considering the last technique, comparison of results is made applying different movement speeds of the Pitot tubes in order to examine their influence on the velocity profile.


Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


2017 ◽  
Vol 18 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Lachlan J. G. Mitchell ◽  
David B. Pyne ◽  
Philo U. Saunders ◽  
Ben Rattray

2021 ◽  
Vol 144 (3) ◽  
Author(s):  
Matthias Joppa ◽  
Mike Bermuske ◽  
Frank Rüdiger ◽  
Lars Büttner ◽  
Jochen Fröhlich ◽  
...  

Abstract Impinging circular free-surface water jets are used in challenging cooling and cleaning tasks. In order to develop simulation models for process optimization, validation data are required, which are currently not available. Therefore, the flow field of these jets is studied for the first time with the novel laser Doppler velocity profile sensor. The mean velocity field and fluctuations are measured within the stagnation and adjacent redirection region for radial coordinates up to three times the nozzle diameter. In the examined parameter range with jet velocities up to 17 m/s and nozzle diameters up to 5.2 mm, i.e., Reynolds numbers up to 69 500, thin films of a few hundred micrometers are formed, which hinder the measurement with common optical measuring systems. Based on the measurement results, a comparatively low-cost volume of fluid simulation model is developed and validated that presumes a relaminarized film flow. The profiles measured and the simulated flow show very good agreement. In the future, the simulation model provides a basis for process optimization and the innovative measurement technology used will prospectively provide further detailed insights into other flows with high velocity gradients.


Author(s):  
Leonidas Petridis ◽  
Gergely Pálinkás ◽  
Zsófia Tróznai ◽  
Bettina Béres ◽  
Katinka Utczás

The aim of this study was to assess the vertical jump performance and the force-velocity profile of elite female handball and volleyball players. Forty-one female athletes were measured, 28 handball players (age: 24.0 ± 3.6 years, body height: 1.75 ± 0.05 m, body mass: 69.0 ± 7.3 kg) and 13 volleyball players (age: 24.1 ± 5.2 years, body height: 1.83 ± 0.07 m and body mass: 74.9 ± 7.9 kg). All players performed unloaded and loaded countermovement jumps (CMJ) on a force platform. The theoretical maximal force ( F0), the theoretical maximum velocity ( v0), the theoretical maximal power ( Pmax), the slope of the F-v relationship ( Sfv) and the force-velocity imbalance ( FVimb) were calculated. Mean value of vertical jump height was 0.33 ± 0.03m, with no difference between handball and volleyball players. Mean values of F0, v0, Pmax, Sfv and FVimb for all players were 31.2 ± 2.6 N/kg, 3.10 ± 0.50 m·s−1, 24.2 ± 3.2 w/kg, -10.32 ± 2.09 Ns/m/kg and 28.1 ± 13.3% respectively. Two players had a low magnitude velocity-deficit, whereas most of the players exhibited a low to high force-deficit. A strong correlation was found between the ratio of measured to optimal F-v slope with the change in the proportion of net force to total force during unloaded and loaded conditions. The findings suggest that it would be beneficial for these athletes to first decrease their force deficit through mainly maximal strength training before implementing training to further maximize power output. Establishment of the F-v profile could be a useful diagnostic tool for coaches to optimize strength training and to design training intervention based on the individual need of each athlete.


2005 ◽  
Vol 15 (3) ◽  
pp. 152-159 ◽  
Author(s):  
A. Krope ◽  
J. Krope ◽  
L.C. Lipus

Abstract A new model for mean velocity profile of turbulent water flow with added drag-reducing surfactants is presented in this paper. The general problem of drag due to frictional resistance is reviewed and drag reduction by the addition of polymers or surfactants is introduced. The model bases on modified Prandtl's mixing length hypothesis and includes three parameters, which depend on additives and can be evaluated by numerical simulation from experimental datasets. The advantage of the model in comparison with previously reported models is that it gives uniform curve for whole pipe section and can be determined for a new surfactant with less necessary measurements. The use of the model is demonstrated for surfactant Habon-G as an example.


Author(s):  
M. Arulraja ◽  
G.W. Rankin ◽  
K. Sridhar

Decay of the maximum velocity of an incompressible, axisymmetric, submerged, laminar free jel is related to the second derivative of the velocity profile at the centre line by using the momentum equation along the jet axis with boundary layer approximations. Using this decay relation and the experimental fact that the velocity profile near the jet axis remains parabolic it is shown that maximum velocity decay is linear in the developing region. The length of the developing region and the location of the virtual origin are obtained by matching the maximum velocity variations at the boundary between the developing and fully developed regions. These values are compared with the results of conventional jet matching schemes and with other information available in the literature.


Sign in / Sign up

Export Citation Format

Share Document