Downregulation of miR-519d-3p is Associated with Poor Outcomes and Facilitates Tumor Progression in Papillary Thyroid Cancer by Regulating FOXQ1

2021 ◽  
Vol 53 (09) ◽  
pp. 625-632
Author(s):  
Pihong Li ◽  
Xiaoyu Pan ◽  
Zhouci Zheng ◽  
Yihan Sun ◽  
Yifan Han ◽  
...  

AbstractMicroRNA-519d-3p (miR-519d-3p) has emerged as a tumor suppressor in several human cancers. But whether miR-519d-3p is involved in papillary thyroid cancer (PTC) remains elusive. In this study, we investigated the potential relevance of miR-miR-519d-3p in PTC. A retrospective study of 119 PTCs was carried out. The RT-qPCR analysis was used to measure the expression of miR-519d-3p and FOXQ1 in PTC tissues and cells. Chi-square test, Kaplan–Meier curve analysis, and multivariate Cox regression analyses were performed to assess the clinical and prognostic value of miR-519d-3p in PTC. Then cellular experiments were used to explore its biological effects on PTC cells. Finally, the Pearson correlation coefficient, dual-luciferase reporter assay, and rescue experiments were used to analyze the association between miR-519d-3p and FOXQ1. miR-519d-3p was significantly downregulated in PTC tissues and cell lines. The decreased expression of miR-519d-3p was associated with reduced overall survival and progression-free survival of patients. The proliferative, migratory, and invasive abilities of cells were blocked or elevated after upregulation or downregulation of miR-519d-3p, while FOXQ1 reversed these cellular behaviors caused after upregulation or knockdown of miR-519d-3p. In conclusion, miR-519d-3p was downregulated in PTC and associated with OS and PFS of patients. MiR-519d-3p may be a tumor-inhibiting miRNA in PTC, and that miR-519d-3p/FOXQ1 axis mediated PTC tumor progression from cell proliferation, migration, and invasion in PTC cells.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Luyao Wu ◽  
Yu Ding ◽  
Houchao Tong ◽  
Xi Zhuang ◽  
Jingsheng Cai ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in various cancers. However, the functional roles of most lncRNA in papillary thyroid cancer (PTC) are not detailly understood. This study aims to investigate the biological function and molecular mechanism of lncRNA Fer-1 like family member 4 (FER1L4) in PTC. Methods The expression of FER1L4 in PTC was determined via operating quantitative real-time PCR assays. Meanwhile, the clinical significance of FER1L4 in patients with PTC was described. The biological functions of FER1L4 on PTC cells were evaluated by gain and loss of function experiments. Moreover, animal experiments were performed to reveal the effect on tumor growth. Subcellular distribution of FER1L4 was determined by fluorescence in situ hybridization and subcellular localization assays. Luciferase reporter assay and RNA immunoprecipitation assay were applied to define the relationship between FER1L4, miR-612, and Cadherin 4 (CDH4). Results Upregulated expression of FER1L4 in PTC tissues was positively correlated with lymph node metastasis (P = 0.020), extrathyroidal extension (P = 0.013) and advanced TNM stages (P = 0.013). In addition, knockdown of FER1L4 suppressed PTC cell proliferation, migration, and invasion, whereas ectopic expression of FER1L4 inversely promoted these processes. Mechanistically, FER1L4 could competitively bind with miR-612 to prevent the degradation of its target gene CDH4. This condition was further confirmed in the rescue assays. Conclusions This study first demonstrates FER1L4 plays an oncogenic role in PTC via a FER1L4-miR-612-CDH4 axis and may provide new therapeutic and diagnostic targets for PTC.


2021 ◽  
Author(s):  
Luyao Wu ◽  
Yu Ding ◽  
Xi Zhuang ◽  
Jingsheng Cai ◽  
Houchao Tong ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in various cancers. However, the functional roles of most lncRNA in papillary thyroid cancer (PTC) are not detailly understood. This study aims to investigate the biological functions and the molecular mechanism of lncRNA FER1L4 in PTC.Methods: The expression of FER1L4 in PTC was determined via operating RT-PCR assays. Meanwhile, the clinical significance of FER1L4 in PTC patients was described. The biological functions of FER1L4 on PTC cells were evaluated by gain and loss of function experiments. Moreover, animal experiments were performed to reveal the effect on tumor growth. Subcellular distribution of FER1L4 was determined by fluorescence in situ hybridization and subcellular localization assays. Luciferase reporter assay and RNA immunoprecipitation assay were applied to define the relationship between FER1L4, miR-612, and CDH4. Results: Upregulated expression of FER1L4 in PTC tissues was correlated with higher lymph node metastasis rate (p=0.020), extrathyroidal extension (p=0.013), and advanced TNM stage (p=0.013). In addition, knockdown of FER1L4 suppressed PTC cell proliferation, migration and invasion, whereas ectopic expression of FER1L4 inversely promoted these processes. Mechanistically, FER1L4 could competitively bind with miR-612 to prevent the degradation of its target gene Cadherin 4 (CDH4). This condition was further confirmed in the rescue assays.Conclusions: This study firstly demonstrates FER1L4 plays an oncogenic role in PTC via FER1L4-miR-612-CDH4 axis and may provide a new therapeutic and diagnostic target for PTC.


Author(s):  
Yinghe Sun ◽  
Wenhai Sun ◽  
Hui Hua ◽  
Jianhua Zhang ◽  
Qianqian Yu ◽  
...  

AbstractPapillary thyroid cancer (PTC) is a major kind of thyroid cancer with increasing recurrence and metastasis. MiR-127 has been demonstrated to play roles in many cancers with dysregulation. However, the function of miR-127 is still unknown. This study aimed to explore a novel biomarker for the progression and prognosis of PTC. A set of 118 patients with PTC were collected from the Affiliated Hospital of Qingdao University. qRT-PCR was used to detect the expression of miR-127 in PTC tissues and cells. The association between miR-127 expression and the clinicopathological features of patients were evaluated by the χ2 test, and the prognostic value of miR-127 was evaluated by Kaplan–Meier analysis and Cox regression analysis. The effect of miR-127 on cell proliferation, migration, and invasion of PTC was analyzed by CCK-8 and transwell assay. miR-127 was found to be upregulated in PTC tissues and cells correlated with the TNM stage and poor prognosis of PTC patients. MiR-127 and the TNM stage were considered as two independent prognostic indicators for PTC. Moreover, overexpression of miR-127 significantly enhanced cell proliferation, migration, and invasion of PTC by targeting REPIN1. miR-127 may be involved in the progression of PTC, which provides a new therapeutic strategy for PTC.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052093465
Author(s):  
Sha Luan ◽  
Peng Fu ◽  
Xinyu Wang ◽  
Yue Gao ◽  
Ke Shi ◽  
...  

Objective Papillary thyroid cancer (PTC) is one of the most prevalent endocrine malignancies and the fifth most common cancer in women. Circular RNAs (circRNAs) have been shown to play vital functions in cancers, but few studies have focused on the functions and mechanism of dysregulated circRNAs in PTC. Methods Quantitative reverse transcription PCR was used to measure circ-NCOR2 levels in PTC tissues and cell lines. The functions of circ-NCOR2 in PTC were examined by analysis using the cell counting kit-8, clone forming, flow cytometry, and Transwell experiments. Bioinformatic analysis and dual luciferase reporter gene testing were used to identify the mechanisms of circ-NCOR2. Results Circ-NCOR2 overexpression was observed in PTC tissues and cells. Silenced or overexpressed expression of circ-NCOR2 strikingly attenuated or facilitated, respectively, the growth, migration, and invasion of PTC cells. Mechanistically, miR-615a-5p was identified as the target of circ-NCOR2. Moreover, circ-NCOR2 enhanced the expression of metastasis-associated protein 2 (MTA2) by sponging miR-615a-5p, thereby facilitating PTC cell progression. Conclusions Taken together, our findings reveal a novel circ-NCOR2/miR-615a-5p/MTA2 axis in PTC, which could become a potential therapeutic target for this disease.


2018 ◽  
Vol 50 (5) ◽  
pp. 1659-1672 ◽  
Author(s):  
Fada Xia ◽  
Yong Chen ◽  
Bo Jiang ◽  
Xin Du ◽  
Yao Peng ◽  
...  

Background/Aims: Thyroid cancer is one of the most prevalent endocrine tumors. The present study examined the effects of lncRNA HOXA cluster antisense RNA2 (HOXA-AS2) on the progression of papillary thyroid cancer (PTC), and explored the underlying molecular mechanisms. Methods: Quantitative real-time PCR was used to detect HOXA-AS2, miR-520c-3p and S100 calcium-binding protein A4 (S100A4) expression. Furthermore, the effects of HOXA-AS2 silencing and overexpression on cell proliferation, migration, and invasion were assessed in PTC in vitro by CCK8 and transwell assay. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in PTC. Results: We observed that HOXA-AS2 was up-regulated in PTC tissues. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited cell growth in PTC in vitro and in vivo. Further functional assays indicated that HOXA-AS2 significantly promoted PTC cell migration and invasion by promoting EMT. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in PTC cells. MiR-520c-3p was down-regulated in PTC tissues, and S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: In summary, our results suggested that the HOXA-AS2/miR-520c-3p/S100A4 axis may play an important role in the regulation of PTC progression, which provides us with new insights into understanding the PTC.


2020 ◽  
Vol 69 (1) ◽  
pp. 66-74
Author(s):  
Su Dong ◽  
Shuai Xue ◽  
Yue Sun ◽  
Zhe Han ◽  
Lele Sun ◽  
...  

MicroRNA-363-3 p (miR-363–3 p) has been reported to play a crucial role in tumor development and progression, and function as a tumor suppressor in many types of cancer. In our previous studies, we found that miRNA-363–3 p inhibited papillary thyroid carcinoma (PTC) progression by targeting PIK3CA. Meanwhile, we found that NIN1/RPN12 binding protein 1 (NOB1) was significantly upregulated in thyroid carcinoma tissue and downregulation of NOB1 expression significantly inhibited cell proliferation, migration and invasion in PTC. However, the correlation of NOB1 and miR-363–3 p has not been investigated. Here, we performed bioinformatic analysis to explore miRNA targeting NOB1. We found that NOB1 was a target of miR-363–3 p and miR-363–3 p regulated NOB1 expression at the translational and transcriptional levels by targeting its 3’ untranslated region (3'-UTR). Further, we showed that miR-363–3 p inhibited tumor progression by targeting NOB1 in vitro and in vivo. We found that overexpression miR-363–3 p or silencing NOB1 significantly increased G0/G1-phase and decreased S-phase in the human papillary thyroid cells, which led to a significant delay in cell proliferation, indicating miR-363–3 p and NOB1 are crucial for human papillary thyroid cancer tumorigenesis. Collectively, our data unveil that miR-363–3 p negatively regulates NOB1 activity by reducing its stability. This study provides a new therapeutic target for regulation of NOB1 stability to modulate human papillary thyroid cancer progression.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaoping Zhang ◽  
Dan Li ◽  
Chengyou Jia ◽  
Haidong Cai ◽  
Zhongwei Lv ◽  
...  

Abstract Background Papillary thyroid cancer (PTC) is the most common type of cancer of the endocrine system. Long noncoding RNAs (lncRNAs) are emerging as a novel class of gene expression regulators associated with tumorigenesis. Through preexisting databases available for differentially expressed lncRNAs in PTC, we uncovered that lncRNA OIP5-AS1 was significantly upregulated in PTC tissues. However, the function and the underlying mechanism of OIP5-AS1 in PTC are poorly understood. Methods Expression of lncRNA OIP5-AS1 and miR-98 in PTC tissue and cells were measured by quantitative real-time PCR (qRT-PCR). And expression of METTL14 and ADAMTS8 in PTC tissue and cells were measured by qRT-PCR and western blot. The biological functions of METTL14, OIP5-AS1, and ADAMTS8 were examined using MTT, colony formation, transwell, and wound healing assays in PTC cells. The relationship between METTL14 and OIP5-AS1 were evaluated using RNA immunoprecipitation (RIP) and RNA pull down assay. And the relationship between miR-98 and ADAMTS8 were examined by luciferase reporter assay. For in vivo experiments, a xenograft model was used to investigate the effects of OIP5-AS1 and ADAMTS8 in PTC. Results Functional validation revealed that OIP5-AS1 overexpression promotes PTC cell proliferation, migration/invasion in vitro and in vivo, while OIP5-AS1 knockdown shows an opposite effect. Mechanistically, OIP5-AS1 acts as a target of miR-98, which activates ADAMTS8. OIP5-AS1 promotes PTC cell progression through miR-98/ADAMTS8 and EGFR, MEK/ERK pathways. Furthermore, RIP and RNA pull down assays identified OIP5-AS1 as the downstream target of METTL14. Overexpression of METTL14 suppresses PTC cell proliferation and migration/invasion through inhibiting OIP5-AS1 expression and regulating EGFR, MEK/ERK pathways. Conclusions Collectively, our findings demonstrate that OIP5-AS1 is a METTL14-regulated lncRNA that plays an important role in PTC progression and offers new insights into the regulatory mechanisms underlying PTC development.


2017 ◽  
Vol Volume 10 ◽  
pp. 2737-2738
Author(s):  
Shujun Xia ◽  
Chuandong Wang ◽  
Emily Louise Postma ◽  
Yanhua Yang ◽  
Xiaofeng Ni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document