miR-1229-3p as a Prognostic Predictor Facilitates Cell Viability, Migration, and Invasion of Hepatocellular Carcinoma

2021 ◽  
Vol 53 (11) ◽  
pp. 759-766
Author(s):  
Chunhong Zhang ◽  
Qi Zhang ◽  
Honghai Li ◽  
Yan Wu

AbstractHepatocellular carcinoma (HCC) remains one of the most prevalent human malignancies with high mortality. Increasing studies have revealed microRNAs (miRNAs) play crucial roles in the tumorigenesis and progression of cancers. The current study investigated the expression levels of miR-1229-3p and its potential role in HCC. This study enrolled 121 HCC patients. The expression of miR-1229-3p was measured using RT-qPCR in HCC tissue samples and cell lines. The association of miR-1229-3p expression with clinical parameters and patients’ prognosis was analyzed by χ2 test, Kaplan–Meier, and multivariate Cox regression analyses, respectively. The functions of miR-1229-3p in HCC cells were explored by CCK-8 assay, Transwell migration, and invasion assays. miR-1229-3p was upregulated in HCC tissue samples and cell lines. The upregulation of miR-1229-3p was related to positive lymph node metastasis and advanced TNM stages and predicted with patients’ poor prognosis. Overexpression of miR-1229-3p facilitated cell viability and metastasis of HCC cells while knockdown of miR-1229-3p suppressed cell viability and metastasis of HCC cells in vitro. miR-1229-3p may function as an oncogenic role in HCC via promoting cell viability and metastasis. Moreover, miR-1229-3p may be a predictive marker for tumor development and prognosis of HCC patients.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2016 ◽  
Vol 44 (6) ◽  
pp. 1234-1247 ◽  
Author(s):  
Eunyoung Tak ◽  
Dae Young Jun ◽  
Seok-Hwan Kim ◽  
Gil-Chun Park ◽  
Jooyoung Lee ◽  
...  

Objective To examine if hypoxia inducible factor-1α (HIF-1α) can induce the upregulation of the purinergic receptor P2Y2 (P2Y2) and thereby promote the viability of human hepatocellular carcinoma (HCC) cells under hypoxic conditions. Methods Archival HCC tumour specimens and corresponding non-cancerous tissues were examined immunohistochemically for P2Y2 protein. A series of in vitro experiments were undertaken using HCC cell lines to determine the effect of hypoxia on HIF-1α and P2Y2 levels, the effect of HIF-1α upregulation on P2Y2 levels, and the effect of P2Y2 upregulation on cell viability under hypoxic conditions. Results Human HCC specimens were positive for P2Y2. Hypoxia and upregulated HIF-1α both upregulated the P2Y2 levels in HCC cell lines. P2Y2 upregulation using plasmid transfection resulted in enhanced cell viability under hypoxia. Treatment of HepG2 cells with the selective P2Y2 antagonist MRS2312 downregulated P2Y2 and reduced cell viability in five HCC cell lines. P2Y2 knockdown reduced HepG2 cell viability under hypoxia. Conclusions These present results suggest that HCC cells upregulate P2Y2 levels during hypoxia, which in turn promotes their growth. P2Y2 could be a potential therapeutic target for treating HCC.


2020 ◽  
Author(s):  
cailin xue ◽  
xudong zhang ◽  
peng gao ◽  
weiwei yu ◽  
xiaohan cui ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and has an unfavorable clinical outcome. Emerging evidences have demonstrated that long noncoding RNAs (lncRNAs) play an important role in the carcinogenesis and progression of HCC. However, the clinical significances, the biological roles of most lncRNAs in HCC remain poorly understood. Methods The expression levels of lncRNA loc339803 in HCC tissues and cell lines were determined by quantitative real-time polymerase chain reaction(qRT-PCR) assay. The cellular sublocalization of loc339803 were determined by fluorescence in situ hybridization and nuclear & cytoplasmic RNA isolation assay. Western blot, CCK-8, Edu, colony formation, migration and invasion assays were used to investigate the roles of loc339803 in progression of HCC in vitro. A mouse model for lung metastasis was constructed to evaluate the role of loc339803 in HCC development in vivo. The correlations among loc339803, miR-30a-5p and SNAIL1 were validated by qRT-PCR and a dual- luciferase reporter assay. Results The expression of loc339803 was upregulated in HCC tissues and cell lines, and positively correlated with tumor size, advanced tumor stage, higher serum AFP level and poor prognosis of HCC patients. loc339803 can promote the migration and invasion of HCC cells in vivo and in vitro. Further studies demonstrated the loc339803 functioned as a competing endogenous RNA (ceRNA) by directly binding to miR-30a-5p, thus up-regulating the expression of snai1, a target gene of miR-30a-5p. Moreover, miR-30a-5p upregulation blocked the enhancement of migration and invasion of HCC cells induced by loc339803 overexpression. Conclusions Loc339803 may be oncogenic in HCC and associated with poor clinical outcomes. LncRNA loc339803 might promote the invasion and migration of HCC cells through regulating miR-30a-5p/ SNAIL1 axis.


2018 ◽  
Vol 50 (6) ◽  
pp. 2124-2138 ◽  
Author(s):  
Ying Zhang ◽  
Jianliang Xu ◽  
Shaoquan Zhang ◽  
Jun An ◽  
Jin Zhang ◽  
...  

Background/Aims: Previous studies have demonstrated that long non-coding RNAs (lncRNAs) may play critical roles in cancer biology, including Hepatocellular carcinoma (HCC). The HOXA cluster antisense RNA2 (HOXA-AS2) lncRNA plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in HCC remains unknown. The present study examined the effects of HOXA-AS2 on the progression of HCC, and explored the underlying molecular mechanisms. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in HCC tissues and cell lines. Furthermore, the effects of HOXA-AS2 silencing and overexpression on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in HCC in vitro and in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in HCC cells. Results: We observed that HOXA-AS2 was up-regulated in HCC tissues and cell lines. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited HCC cells proliferation by causing G1 arrest and promoting apoptosis, whereas HOXA-AS2 overexpression promoted cell growth. Further functional assays indicated that HOXA-AS2 significantly promoted HCC cell migration and invasion by promoting EMT. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in HCC cells. MiR-520c-3p was down-regulated and inversely correlated with HOXA-AS2 expression in HCC tissues. miR-520c-3p suppressed cell proliferation, invasion and migration in HCC cells, and enforced expression of miR-520c-3p attenuated the oncogenic effects of HOXA-AS2 in HCC cells. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-223-3p directly targeted the 3’-untranslated region (UTR) of Glypican-3 (GPC3), one of the key players in HCC. GPC3 was up-regulated in HCC tissues, and was negatively correlated with miR-520c-3p expression and positively correlated with HOXA-AS2 expression. Conclusion: In summary, our results suggested that the HOXA-AS2/miR-520c-3p/GPC3 axis may play an important role in the regulation of PTC progression, which could serve as a biomarker and therapeutic target for HCC.


2021 ◽  
Vol 11 (5) ◽  
pp. 332
Author(s):  
Szu-Jen Wang ◽  
Pei-Ming Yang

Hepatocellular carcinoma (HCC) is a relatively chemo-resistant tumor. Several multi-kinase inhibitors have been approved for treating advanced HCC. However, most HCC patients are highly refractory to these drugs. Therefore, the development of more effective therapies for advanced HCC patients is urgently needed. Stathmin 1 (STMN1) is an oncoprotein that destabilizes microtubules and promotes cancer cell migration and invasion. In this study, cancer genomics data mining identified STMN1 as a prognosis biomarker and a therapeutic target for HCC. Co-expressed gene analysis indicated that STMN1 expression was positively associated with cell-cycle-related gene expression. Chemical sensitivity profiling of HCC cell lines suggested that High-STMN1-expressing HCC cells were the most sensitive to MST-312 (a telomerase inhibitor). Drug–gene connectivity mapping supported that MST-312 reversed the STMN1-co-expressed gene signature (especially BUB1B, MCM2/5/6, and TTK genes). In vitro experiments validated that MST-312 inhibited HCC cell viability and related protein expression (STMN1, BUB1B, and MCM5). In addition, overexpression of STMN1 enhanced the anticancer activity of MST-312 in HCC cells. Therefore, MST-312 can be used for treating STMN1-high expression HCC.


2021 ◽  
Author(s):  
Wangyang zheng ◽  
Yuling Zheng ◽  
Xue Bai ◽  
Yongxu Zhou ◽  
Liang Yu ◽  
...  

Abstract Background: Ribophorin family (RPNs) are important regulatory subunits of the proteasome. By influencing Ubiquitin-proteasome system activity, RPNs are responsible for almost all processes of physiology and pathology of mammalian cells. Nevertheless, little is known about the role of RPNs in HCC.Methods: In this work, using the online databases Oncomine, UCSC, Kaplan-Meier Plotter, UALCAN, cBioPortal, TIMER2, GeneMANIA,and STRING, we first evaluated the expression, diagnostic, prognostic, genetic alteration, immunity, gene network, and functional enrichment of RPNs in HCC. QPCR and western blot were used to detect RPN6 and RPN9 expressions in HCC tissues and cell lines. Then we performed studies to eveulated their functions in HCC cells proliferation, migration, and invasion in vitro. Results: All RPNs were surprisingly consistently upregulated in HCC tissues. Moreover, RPNs expression pattern is correlated with HCC tumor grade. RPN2, RPN3, RPN6, RPN9, RPN10, RPN11, and RPN12 have robust values in HCC diagnose. Then, survival analysis revealed that high expression of RPN1, RPN2, RPN4, RPN5, RPN6, RPN9, and RPN11were correlated with unfavorable HCC overall survival. Functional enrichment for RPNs, indicated that RPNs have many potential biosynthesis activities expert for UPS functions. Western blot, and qRT-PCR further verified these results in HCC tissues and cell lines. The silencing of RPN6 and RPN9 significantly influenced HCC cells' proliferation, migration, and invasion in vitro.Conclusions: RPN families functions as an important oncogene in HCC. RPN6 and RPN9 have the potential to be potential biomarkers and targets for HCC.


2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2020 ◽  
Vol 117 (9) ◽  
pp. 4770-4780 ◽  
Author(s):  
Hao Jiang ◽  
Hui-Jun Cao ◽  
Ning Ma ◽  
Wen-Dai Bao ◽  
Jing-Jing Wang ◽  
...  

Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial–mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lian Liu ◽  
Jia-Qi Sheng ◽  
Mu-Ru Wang ◽  
Yun Gan ◽  
Xiao-Li Wu ◽  
...  

Primary cilia are organelles protruding from cell surface into environment that function in regulating cell cycle and modulating cilia-related signal. Primary ciliogenesis and autophagy play important roles in tumorigenesis. However, the functions and interactions between primary cilia and autophagy in hepatocellular carcinoma (HCC) have not been reported yet. Here, we aimed to investigate the relationship and function of primary cilia and autophagy in HCC. In vitro, we showed that serum starvation stimuli could trigger primary ciliogenesis in HCC cells. Blockage of primary ciliogenesis by IFT88 silencing enhanced the proliferation, migration, and invasion ability of HCC cells. In addition, inhibition of primary cilia could positively regulate autophagy. However, the proliferation, migration, and invasion ability which were promoted by IFT88 silencing could be partly reversed by inhibition of autophagy. In vivo, interference of primary cilia led to acceleration of tumor growth and increase of autophagic flux in xenograft HCC mouse models. Moreover, IFT88 high expression or ATG7 low expression in HCC tissues was correlated with longer survival time indicated by the Cancer Genome Atlas (TCGA) analysis. In conclusion, our study demonstrated that blockage of primary ciliogenesis by IFT88 silencing had protumor effects through induction of autophagy in HCC. These findings define a newly recognized role of primary cilia and autophagy in HCC.


Sign in / Sign up

Export Citation Format

Share Document