scholarly journals RPNs Levels are Prognostic and Diagnostic Markers for Hepatocellular Carcinoma

Author(s):  
Wangyang zheng ◽  
Yuling Zheng ◽  
Xue Bai ◽  
Yongxu Zhou ◽  
Liang Yu ◽  
...  

Abstract Background: Ribophorin family (RPNs) are important regulatory subunits of the proteasome. By influencing Ubiquitin-proteasome system activity, RPNs are responsible for almost all processes of physiology and pathology of mammalian cells. Nevertheless, little is known about the role of RPNs in HCC.Methods: In this work, using the online databases Oncomine, UCSC, Kaplan-Meier Plotter, UALCAN, cBioPortal, TIMER2, GeneMANIA,and STRING, we first evaluated the expression, diagnostic, prognostic, genetic alteration, immunity, gene network, and functional enrichment of RPNs in HCC. QPCR and western blot were used to detect RPN6 and RPN9 expressions in HCC tissues and cell lines. Then we performed studies to eveulated their functions in HCC cells proliferation, migration, and invasion in vitro. Results: All RPNs were surprisingly consistently upregulated in HCC tissues. Moreover, RPNs expression pattern is correlated with HCC tumor grade. RPN2, RPN3, RPN6, RPN9, RPN10, RPN11, and RPN12 have robust values in HCC diagnose. Then, survival analysis revealed that high expression of RPN1, RPN2, RPN4, RPN5, RPN6, RPN9, and RPN11were correlated with unfavorable HCC overall survival. Functional enrichment for RPNs, indicated that RPNs have many potential biosynthesis activities expert for UPS functions. Western blot, and qRT-PCR further verified these results in HCC tissues and cell lines. The silencing of RPN6 and RPN9 significantly influenced HCC cells' proliferation, migration, and invasion in vitro.Conclusions: RPN families functions as an important oncogene in HCC. RPN6 and RPN9 have the potential to be potential biomarkers and targets for HCC.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2021 ◽  
Vol 53 (11) ◽  
pp. 759-766
Author(s):  
Chunhong Zhang ◽  
Qi Zhang ◽  
Honghai Li ◽  
Yan Wu

AbstractHepatocellular carcinoma (HCC) remains one of the most prevalent human malignancies with high mortality. Increasing studies have revealed microRNAs (miRNAs) play crucial roles in the tumorigenesis and progression of cancers. The current study investigated the expression levels of miR-1229-3p and its potential role in HCC. This study enrolled 121 HCC patients. The expression of miR-1229-3p was measured using RT-qPCR in HCC tissue samples and cell lines. The association of miR-1229-3p expression with clinical parameters and patients’ prognosis was analyzed by χ2 test, Kaplan–Meier, and multivariate Cox regression analyses, respectively. The functions of miR-1229-3p in HCC cells were explored by CCK-8 assay, Transwell migration, and invasion assays. miR-1229-3p was upregulated in HCC tissue samples and cell lines. The upregulation of miR-1229-3p was related to positive lymph node metastasis and advanced TNM stages and predicted with patients’ poor prognosis. Overexpression of miR-1229-3p facilitated cell viability and metastasis of HCC cells while knockdown of miR-1229-3p suppressed cell viability and metastasis of HCC cells in vitro. miR-1229-3p may function as an oncogenic role in HCC via promoting cell viability and metastasis. Moreover, miR-1229-3p may be a predictive marker for tumor development and prognosis of HCC patients.


2021 ◽  
Author(s):  
Wenjin Qiu ◽  
Xiaomin Cai ◽  
Kaya Xu ◽  
Shibin Song ◽  
Zumu Xiao ◽  
...  

Abstract Background Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological functions and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Methods PRL1 expression levels were analyzed in glioma tissues and cell lines. Multiple glioma cell lines were transfected with PRL1-overexpressing and shRNA constructs. In vitro proliferation, migration and invasion assays were conducted. Western blot and ubiquitylation assays were performed for molecular and mechanistic analyses. PRL1 expression levels were correlated with downstream ubiquitin pathway and clinical parameters using archival GBM samples. Results PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorgenicity and invasion both in vitro and in vivo by promoting EMT. Conversely, knocking down PRL1 blocked EMT in the GBM cells, and inhibited their invasion, migration and tumorigenic growth. PRL1 also stabilized Snail2 through deubiquitination by activating USP36. Snail2 was identified as a crucial mediator of the oncogenic effects of PRL1 in GBM. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Conclusions PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.


2008 ◽  
Vol 109 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Tae-Young Jung ◽  
Shin Jung ◽  
Hyang-Hwa Ryu ◽  
Young-Il Jeong ◽  
Yong-Hao Jin ◽  
...  

Object Galectin-1 is highly expressed in motile cell lines. The authors investigated whether galectin-1 actually modulates the migration and invasion of human glioblastoma multiforme (GBM) cell lines, and whether its expression with respect to invasion and prognosis is attributable to certain glioma subgroups. Methods In the human GBM cell lines U343MG-A, U87MG, and U87MG-10′, the RNA differential display was evaluated using Genefishing technology. The results were validated by reverse transcription polymerase chain reaction and Northern blot analysis to detect possible genetic changes as the determining factors for the motility of the malignant glioma. The migration and invasion abilities were investigated in human GBM cell lines and galectin-1 transfectant using an in vitro brain slice invasion model and a simple scratch technique. The morphological and cytoskeletal (such as the development of actin and vimentin) changes were examined under light and confocal microscopy. Galectin-1 expression was assessed on immunohistochemical tests and Western blot analysis. Results Endogenous galectin-1 expression in the human GBM cell lines was statistically correlated with migratory abilities and invasiveness. The U87-G-AS cells became more round than the U87MG cells and lacked lamellipodia. On immunohistochemical staining, galectin-1 expression was increased in higher-grade glioma subgroups (p = 0.027). Conclusions Diffuse gliomas demonstrated higher expression levels than pilocytic astrocytoma in the Western blot. Galectin-1 appears to modulate migration and invasion in human glioma cell lines and may play a role in tumor progression and invasiveness in human gliomas.


2020 ◽  
Author(s):  
cailin xue ◽  
xudong zhang ◽  
peng gao ◽  
weiwei yu ◽  
xiaohan cui ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and has an unfavorable clinical outcome. Emerging evidences have demonstrated that long noncoding RNAs (lncRNAs) play an important role in the carcinogenesis and progression of HCC. However, the clinical significances, the biological roles of most lncRNAs in HCC remain poorly understood. Methods The expression levels of lncRNA loc339803 in HCC tissues and cell lines were determined by quantitative real-time polymerase chain reaction(qRT-PCR) assay. The cellular sublocalization of loc339803 were determined by fluorescence in situ hybridization and nuclear & cytoplasmic RNA isolation assay. Western blot, CCK-8, Edu, colony formation, migration and invasion assays were used to investigate the roles of loc339803 in progression of HCC in vitro. A mouse model for lung metastasis was constructed to evaluate the role of loc339803 in HCC development in vivo. The correlations among loc339803, miR-30a-5p and SNAIL1 were validated by qRT-PCR and a dual- luciferase reporter assay. Results The expression of loc339803 was upregulated in HCC tissues and cell lines, and positively correlated with tumor size, advanced tumor stage, higher serum AFP level and poor prognosis of HCC patients. loc339803 can promote the migration and invasion of HCC cells in vivo and in vitro. Further studies demonstrated the loc339803 functioned as a competing endogenous RNA (ceRNA) by directly binding to miR-30a-5p, thus up-regulating the expression of snai1, a target gene of miR-30a-5p. Moreover, miR-30a-5p upregulation blocked the enhancement of migration and invasion of HCC cells induced by loc339803 overexpression. Conclusions Loc339803 may be oncogenic in HCC and associated with poor clinical outcomes. LncRNA loc339803 might promote the invasion and migration of HCC cells through regulating miR-30a-5p/ SNAIL1 axis.


2020 ◽  
Author(s):  
Hongli Mao ◽  
Jinxiu Sheng ◽  
Jinlin Jia ◽  
Chang Wang ◽  
Shanfeng Zhang ◽  
...  

Abstract Background: Solute carrier family 6 member 14 (SLC6A14) is a high-capacity amino acid transporter in mammalian cells. It has gained increasing attention for its potential involvement in the progression and metabolic reprogramming of various malignant tumors. However, the role of SLC6A14 in colorectal cancer (CRC) remains unclear. Methods: Real-time polymerase chain reaction (qRT-PCR), immunoblotting and immunohistochemistry were carried out to detect the expression level of SLC6A14 in human CRC tissues and CRC-derived cell lines. HCT-116 and Caco-2 cell lines were selected to conduct the in vitro functional studies. Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, cell migration and invasion assays were performed to investigate the role of SLC6A14 in CRC cells. Besides, Azoxymethane/Dextran Sulfate Sodium Salt (AOM/DSS)-induced CRC and tumor xenograft models were constructed to explore the effects of SLC6A14 blockade or overexpression on tumor progression in vivo. Results: SLC6A14 was substantially increased in human CRC samples and higher levels of SLC6A14 was correlated with advanced tumor stage, lymph node metastasis and dismal survival of CRC patients. SLC6A14 markedly promoted cell growth, inhibited cell apoptosis, exacerbated migration and invasion of CRC cells in vitro. Mechanistically, SLC6A14 aggravated these malignant phenotypes through activating JAK2/STAT3 signaling pathway, and inhibiting JAK2/STAT3 signaling with specific inhibitors could reverse SLC6A14-mediated tumorigenic effects. Besides, two different animal studies verified the tumor-promoting effect of SLC6A14 in CRC. Conclusion: Our data illustrated the crucial function that SLC6A14 played in the promotion of CRC, suggesting SLC6A14/JAK2/STAT3 axis may serve as novel therapeutic targets for patients with CRC.


2018 ◽  
Vol 50 (6) ◽  
pp. 2124-2138 ◽  
Author(s):  
Ying Zhang ◽  
Jianliang Xu ◽  
Shaoquan Zhang ◽  
Jun An ◽  
Jin Zhang ◽  
...  

Background/Aims: Previous studies have demonstrated that long non-coding RNAs (lncRNAs) may play critical roles in cancer biology, including Hepatocellular carcinoma (HCC). The HOXA cluster antisense RNA2 (HOXA-AS2) lncRNA plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in HCC remains unknown. The present study examined the effects of HOXA-AS2 on the progression of HCC, and explored the underlying molecular mechanisms. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in HCC tissues and cell lines. Furthermore, the effects of HOXA-AS2 silencing and overexpression on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in HCC in vitro and in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in HCC cells. Results: We observed that HOXA-AS2 was up-regulated in HCC tissues and cell lines. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited HCC cells proliferation by causing G1 arrest and promoting apoptosis, whereas HOXA-AS2 overexpression promoted cell growth. Further functional assays indicated that HOXA-AS2 significantly promoted HCC cell migration and invasion by promoting EMT. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in HCC cells. MiR-520c-3p was down-regulated and inversely correlated with HOXA-AS2 expression in HCC tissues. miR-520c-3p suppressed cell proliferation, invasion and migration in HCC cells, and enforced expression of miR-520c-3p attenuated the oncogenic effects of HOXA-AS2 in HCC cells. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-223-3p directly targeted the 3’-untranslated region (UTR) of Glypican-3 (GPC3), one of the key players in HCC. GPC3 was up-regulated in HCC tissues, and was negatively correlated with miR-520c-3p expression and positively correlated with HOXA-AS2 expression. Conclusion: In summary, our results suggested that the HOXA-AS2/miR-520c-3p/GPC3 axis may play an important role in the regulation of PTC progression, which could serve as a biomarker and therapeutic target for HCC.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Anqi Xu ◽  
Xizhao Wang ◽  
Jie Luo ◽  
Mingfeng Zhou ◽  
Renhui Yi ◽  
...  

AbstractThe homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan–Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial–mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.


2020 ◽  
Vol 15 (1) ◽  
pp. 522-531
Author(s):  
Jin-Liang Li ◽  
Zai-Qiu Wang ◽  
Xiao-Li Sun

AbstractObjectiveThis study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma.MethodsProfiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins.ResultsThe data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B.ConclusionIn summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.


Sign in / Sign up

Export Citation Format

Share Document