From Natural Products to Potential Drug Leads: Antimalarials from NZ Marine Organisms

Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
J Wang ◽  
LPP Liew ◽  
AN Pearce ◽  
M Kaiser ◽  
BR Copp
2021 ◽  
Vol 22 (19) ◽  
pp. 10210
Author(s):  
Epole Ntungwe ◽  
Eva María Domínguez-Martín ◽  
Gabrielle Bangay ◽  
Catarina Garcia ◽  
Iris Guerreiro ◽  
...  

Different approaches have been reported to enhance penetration of small drugs through physiological barriers; among them is the self-assembly drug conjugates preparation that shows to be a promising approach to improve activity and penetration, as well as to reduce side effects. In recent years, the use of drug-conjugates, usually obtained by covalent coupling of a drug with biocompatible lipid moieties to form nanoparticles, has gained considerable attention. Natural products isolated from plants have been a successful source of potential drug leads with unique structural diversity. In the present work three molecules derived from natural products were employed as lead molecules for the synthesis of self-assembled nanoparticles. The first molecule is the cytotoxic royleanone 7α-acetoxy-6β-hydroxyroyleanone (Roy, 1) that has been isolated from hairy coleus (Plectranthus hadiensis (Forssk.) Schweinf). ex Sprenger leaves in a large amount. This royleanone, its hemisynthetic derivative 7α-acetoxy-6β-hydroxy-12-benzoyloxyroyleanone (12BzRoy, 2) and 6,7-dehydroroyleanone (DHR, 3), isolated from the essential oil of thicket coleus (P. madagascariensis (Pers.) Benth.) were employed in this study. The royleanones were conjugated with squalene (sq), oleic acid (OA), and/or 1-bromododecane (BD) self-assembly inducers. Roy-OA, DHR-sq, and 12BzRoy-sq conjugates were successfully synthesized and characterized. The cytotoxic effect of DHR-sq was previously assessed on three human cell lines: NCI-H460 (IC50 74.0 ± 2.2 µM), NCI-H460/R (IC50 147.3 ± 3.7 µM), and MRC-5 (IC50 127.3 ± 7.3 µM), and in this work Roy-OA NPs was assayed against Vero-E6 cells at different concentrations (0.05, 0.1, and 0.2 mg/mL). The cytotoxicity of DHR-sq NPs was lower when compared with DHR alone in these cell lines: NCI-H460 (IC50 10.3 ± 0.5 µM), NCI-H460/R (IC50 10.6 ± 0.4 µM), and MRC-5 (IC5016.9 ± 0.5 µM). The same results were observed with Roy-OA NPs against Vero-E6 cells as was found to be less cytotoxic than Roy alone in all the concentrations tested. From the obtained DLS results, 12BzRoy-sq assemblies were not in the nano range, although Roy-OA NP assemblies show a promising size (509.33 nm), Pdl (0.249), zeta potential (−46.2 mV), and spherical morphology from SEM. In addition, these NPs had a low release of Roy at physiological pH 7.4 after 24 h. These results suggest the nano assemblies can act as prodrugs for the release of cytotoxic lead molecules.


2020 ◽  
Author(s):  
Shasank Sekhar Swain ◽  
Sujogya Kumar Panda ◽  
Walter Luyten
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4534
Author(s):  
Taitusi Taufa ◽  
Ramesh Subramani ◽  
Peter Northcote ◽  
Robert Keyzers

The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2542
Author(s):  
Linda Sukmarini

Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain the most consistently successful source of drugs and drug leads. They offer major opportunities for finding novel lead structures that are active against a broad spectrum of assay targets, particularly those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limitations relying on untargeted screening methods, there is a growing trend to employ unconventional secondary metabolomics techniques. Aided by the more in-depth understanding of different biosynthetic pathways and the technological advancement in analytical instrumentation, the development of new methodologies provides an alternative that can accelerate discoveries of new lead-structures of natural origin. This present mini-review briefly discusses selected examples regarding advancements in bioinformatics and genomics (focusing on genome mining and metagenomics approaches), as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and development. The selected recent discoveries from 2015 to 2020 are featured herein.


ChemInform ◽  
2011 ◽  
Vol 42 (18) ◽  
pp. no-no ◽  
Author(s):  
Philip Williams ◽  
Analia Sorribas ◽  
Melanie-Jayne R. Howes
Keyword(s):  

2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Jabeena Khazir ◽  
Darren L. Riley ◽  
Lynne A. Pilcher ◽  
Pieter De-Maayer ◽  
Bilal Ahmad Mir

This review attempts to portray the discovery and development of anticancer agents/drugs from diverse natural sources. Natural molecules from these natural sources including plants, microbes and marine organisms have been the basis of treatment of human diseases since the ancient times. Compounds derived from nature have been important sources of new drugs and also serve as templates for synthetic modification. Many successful anti-cancer drugs currently in use are naturally derived or their analogues and many more are under clinical trials. This review aims to highlight the invaluable role that natural products have played, and continue to play, in the discovery of anticancer agents.


Author(s):  
BALABHASKAR R ◽  
RAJENDRA KUMAR A ◽  
SELVARAJAN S ◽  
FARIDHA A ◽  
GAYATHRI GUNALAN

Natural products continue to be a source for the discovery of drugs and drug leads even from ancient period. 80% of drug molecules have been obtained from either natural products or derivatives of the natural product. It has been found that the concept of a single drug for treating single disease may become outdated in the near future and the need of polyherbal formulations, as an alternate remedy is under investigation. Medicinal and aromatic plants contain biologically important phytochemicals, which have known curative properties. They are found as secondary metabolites in plants. Plants also contain certain other compounds that moderate the effects of the active ingredients. Medicinal and aromatic plants have their own contribution toward the treatment of both noncommunicable and communicable diseases. A survey done by the WHO indicates that a majority of the world population tends to use plants for treating diseases. Cancer, the second largest cause of death after cardiovascular disease accounts for about 3500 million people globally. Due to the serious side effects of synthetic chemopreventive agents, research is going onto investigate the nature derived chemopreventive agents. In addition to the plant-derived compounds, marine, and animal resources also play an important role as clinically beneficial anticancer agents with minimal or no toxicity. The best examples for plant-derived compounds include vincristine, vinblastine, irinotecan, etoposide, and paclitaxel; they have a different mode of action against cancer such as interaction with microtubules, inhibition of topoisomerases I or II, alkylation of DNA, and interference with tumor signal transduction. The natural products from marine sources such as bryostatin, squalamine exhibit a significant antimitotic, and anti-angiogenic activities. The benefits of various anticancer drugs derived from natural products are the fact that it can have its effect on cancer cells alone without harming healthy cells, which is unlikely to be the case with other conventional chemotherapeutics. In this review, various natural products and their anticancer properties have been discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document