Method development for accessing novel myxobacterial chemotypes: Analysis of separate culture conditions in the pursuit of optimizing secondary metabolite production

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
L Niadj ◽  
A Thompson ◽  
JB King ◽  
J You ◽  
CA Mitchell ◽  
...  
2012 ◽  
Vol 7 (6) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Bartholomeu A. Barros-Filho ◽  
Maria C. F. de Oliveira ◽  
Jair Mafezoli ◽  
Francisco G. Barbosa ◽  
Edson Rodrigues-Filho

The basidiomycete Lentinus strigellus was cultivated in three different culture media and the secondary metabolites produced under different culture conditions were isolated and identified. When cultivated in a liquid medium with peptone, L. strigellus afforded the benzopyrans, 2,2-dimethyl-6-methoxychroman-4-one, 4-hydroxy-2,2-dimethyl-6-methoxychromane and (3 R,4 S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychromane. The indole alkaloid echinuline and the anthraquinone fiscione, both unprecedented for the genus Lentinus, were isolated from the mycelium of the fungus. When cultured in Czapek medium enriched with potato broth, the fungus afforded the same benzopyrans except (3 S,4 S)-3,4-dihydroxy-2,2-dimethyl-6-methoxychromane. Panepoxydone and isopanepoxydone were also isolated when the microorganism was grown in Czapek medium.


Author(s):  
Jenny Schwarz ◽  
Stephan Lütz

Over the past decade, the One Strain Many Compounds (OSMAC) approach has been established for silent gene cluster activation and elicitation of secondary metabolite production, but so far the full secondary metabolome of a biosynthetically promising bacterium has not been elucidated yet. Here, we investigate the ability of seven categories of OSMAC conditions to elicit new mass features from bacterial strains with little literature coverage but high biosynthetic potential. The strains B. amyloliquefaciens DSM7, C. coralloides DSM2259, P. fallax HKI727, R. jostii DSM44719 and S. griseochromogenes DSM40499 were selected after genome mining with antiSMASH. After cultivation under OSMAC conditions, the generated extracts were subjected to LC/MS and MZmine analysis to determine new mass features, expressed gene clusters and evaluate the tested culture conditions. 4 predicted compounds, bacillibactin, desferrioxamine B, myxochelin A and surfactin, were identified and up to 147 new mass features were detected in the generated extracts, which greatly surpasses the number of predicted gene clusters. Among the new mass features are bioactive compounds which were so far unreported for the strains such as cyclo-(Tyr-Pro) from DSM7 and nocardamin from DSM2259. Furthermore, the tested culture conditions were evaluated regarding their suitability for the generation of new mass features from the selected strains and promising new starting points for further screenings are postulated. Especially culture conditions with little prior literature coverage are responsible for the activation of secondary metabolite production.


1988 ◽  
Vol 66 (6) ◽  
pp. 658-664 ◽  
Author(s):  
F. Constabel

This review on plant cell fermentation for secondary metabolite production covers cell differentiation, product synthesis and accumulation, compartmentation, material cultured, and culture conditions employed. While product formation, including industrial scale operations, is well advanced, the induction of product formation is still the subject of much present-day research. Analysis of the competence of cells for product formation when associated with structural differentiation is lacking and will require genetic engineering technology.


Author(s):  
Éva Leiter ◽  
Tamás Emri ◽  
Klaudia Pákozdi ◽  
László Hornok ◽  
István Pócsi

Abstract Regulation of signal transduction pathways is crucial for the maintenance of cellular homeostasis and organismal development in fungi. Transcription factors are key elements of this regulatory network. The basic-region leucine zipper (bZIP) domain of the bZIP-type transcription factors is responsible for DNA binding while their leucine zipper structural motifs are suitable for dimerization with each other facilitiating the formation of homodimeric or heterodimeric bZIP proteins. This review highlights recent knowledge on the function of fungal orthologs of the Schizosaccharomyces pombe Atf1, Aspergillus nidulans AtfA, and Fusarium verticillioides FvAtfA, bZIP-type transcription factors with a special focus on pathogenic species. We demonstrate that fungal Atf1-AtfA-FvAtfA orthologs play an important role in vegetative growth, sexual and asexual development, stress response, secondary metabolite production, and virulence both in human pathogens, including Aspergillus fumigatus, Mucor circinelloides, Penicillium marneffei, and Cryptococcus neoformans and plant pathogens, like Fusarium ssp., Magnaporthe oryzae, Claviceps purpurea, Botrytis cinerea, and Verticillium dahliae. Key points • Atf1 orthologs play crucial role in the growth and development of fungi. • Atf1 orthologs orchestrate environmental stress response of fungi. • Secondary metabolite production and virulence are coordinated by Atf1 orthologs.


2021 ◽  
Vol 22 (11) ◽  
pp. 5671
Author(s):  
Mohsen Hesami ◽  
Austin Baiton ◽  
Milad Alizadeh ◽  
Marco Pepe ◽  
Davoud Torkamaneh ◽  
...  

For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document