An Efficient Cascade Synthesis of Ethyl 3-Amino-5-oxoisoxazolidine-4-carboxylate Derivatives

Synthesis ◽  
2017 ◽  
Vol 49 (18) ◽  
pp. 4341-4349
Author(s):  
Runtao Li ◽  
Runrun Li ◽  
Qiang Wei ◽  
Xin Wang ◽  
Zemei Ge

An efficient cascade synthesis of ethyl 3-amino-5-oxoisoxa­zolidine-4-carboxylate derivatives from diethyl 2-(ethoxymethyl­ene)malonate, different hydroxylamines and various amines is developed. This approach tolerates a wide range of amines affording highly functionalized isoxazolidine derivatives, which are expected to be important in organic synthesis and medicinal chemistry.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5560
Author(s):  
Rajeshwar Reddy Aleti ◽  
Alexey A. Festa ◽  
Leonid G. Voskressensky ◽  
Erik V. Van der Eycken

Phenanthridinones are important heterocyclic frameworks present in a variety of complex natural products, pharmaceuticals and displaying wide range of pharmacological actions. Its structural importance has evoked a great deal of interest in the domains of organic synthesis and medicinal chemistry to develop new synthetic methodologies, as well as novel compounds of pharmaceutical interest. This review focuses on the synthesis of phenanthridinone scaffolds by employing aryl-aryl, N-aryl, and biaryl coupling reactions, decarboxylative amidations, and photocatalyzed reactions.


Author(s):  
Yuriy Kuznetsov ◽  
Inna Levina ◽  
Igor Zavarzin

The monograph summarizes the information over the past 20 years on the currently widely used and promising methods for the synthesis of estra-1,3,5(10)-triene derivatives by modifying natural estrogens - estrone and estradiol. The main practical goals of modifying this class of steroids and achievements in the chemistry of steroidal antiestrogens, which are promising drugs for hormonal therapy, are considered. Special attention is paid to the stereochemical features of the reactions and the specific problems of modification of the steroid nucleus of estratrienes associated with the presence of an aromatic fragment in their structure. In addition, the data on the reactivity and stereochemical aspects of the transformations of 13-epiestratriene steroids were summarized. The monograph is intended for a wide range of specialists in the field of organic synthesis, organic, bioorganic, and medicinal chemistry.


Synthesis ◽  
2019 ◽  
Vol 51 (21) ◽  
pp. 4006-4013 ◽  
Author(s):  
Amanda Garrido ◽  
Pierre-Olivier Delaye ◽  
François Quintin ◽  
Mohamed Abarbri ◽  
Pedro Lameiras ◽  
...  

Benzoxazole and benzimidazole are commonly encountered heterocycles in medicinal chemistry and their functionalisation around 1-, 2-, 5-, and/or 6-positions provides a wide range of molecules of biological interest. In this manuscript, a straightforward preparation of diversely and highly substituted benzimidazoles and benzoxazoles on these positions, from a common starting material, a 3,3-dibromoacrolein, is described. Such acrolein derivatives are almost never described in the literature or used as ‘building-block’ for organic synthesis. The double electrophilicity of this substrate was found to be advantageous for condensation with two equivalents of various 1,2-diaminobenzene or 2-aminophenol derivatives. This one-pot reaction performed under metal-free and mild conditions allows the creation of three new carbon–heteroatom bonds and affords the desired heterocycles.


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


2019 ◽  
Author(s):  
Zhonglin Tao ◽  
Brad Gilbert ◽  
Scott Denmark

The enantioselective, vicinal diamination of alkenes represents one of the stereocontrolled additions that remains an outstanding challenge in organic synthesis. A general solution to this problem would enable the efficient and selective preparation of widely useful, enantioenriched diamines for applications in medicinal chemistry and catalysis. In this Article we describe the first enantioselective, <i>syn-</i>diamination of simple alkenes mediated by a chiral, enantioenriched organoselenium catalyst together with a <i>N,N’-</i>bistosyl urea as the bifunctional nucleophile and <i>N-</i>fluorocollidinium tetrafluoroborate as the stoichiometric oxidant. Diaryl, aryl-alkyl, and alkyl-alkyl olefins bearing a variety of substituents are all diaminated in consistently high enantioselectivities selectivities but variable yields. The reaction likely proceeds through a Se(II)/Se(IV) redox catalytic cycle reminiscent of the <i>syn-</i>dichlorination reported previously. Furthermore, the <i>syn</i>-stereospecificity of the transformation shows promise for highly enantioselective diaminations of alkenes with no strong steric or electronic bias.


2019 ◽  
Vol 26 (23) ◽  
pp. 4403-4434 ◽  
Author(s):  
Susimaire Pedersoli Mantoani ◽  
Peterson de Andrade ◽  
Talita Perez Cantuaria Chierrito ◽  
Andreza Silva Figueredo ◽  
Ivone Carvalho

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.


2020 ◽  
Vol 24 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Shima Roshankar ◽  
Fatemeh Mohajer ◽  
Alireza Badiei

Abstract:: Mesoporous silica nanomaterials provide an extraordinary advantage for making new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts, are used for a wide range of organic synthesis. The importance of the chiral ligands, which were immobilized on the SBA-15, was mentioned in this review to achieve chiral products as valuable target molecules. Herein, their synthesis and application in different organic transformations are reviewed from 2016 till date 2020.


2019 ◽  
Vol 23 (6) ◽  
pp. 643-678
Author(s):  
Lalthazuala Rokhum ◽  
Ghanashyam Bez

Recent years have witnessed a fast development of solid phase synthetic pathways, a variety of solid-supported reagent and its applications in diverse synthetic strategies and pharmaceutical applicability’s. Polymer-supported triphenylphosphine is getting a lot of applications owing to the speed and simplicity in the process. Furthermore, ease of recyclability and reuse of polymer-supported triphenylphosphine added its advantages. This review covers a wide range of useful organic transformations which are accomplished using cross-linked polystyrene-supported triphenylphosphine with the aim of giving renewed interest in the field of organic and medicinal-combinatorial chemistry.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1001
Author(s):  
Rui Huang ◽  
David C. Luther ◽  
Xianzhi Zhang ◽  
Aarohi Gupta ◽  
Samantha A. Tufts ◽  
...  

Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applications. These applications are enabled through molecular design of surface coverages, modulating NP interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles with ”small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used to engineer NPs for nanobiology and nanomedicine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Cao ◽  
Wei Hong ◽  
Ziqi Ye ◽  
Lei Gong

AbstractThe direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.


Sign in / Sign up

Export Citation Format

Share Document