scholarly journals Fibrin and Fibrinogen Proteolysis Products: Comparison Between Gel Filtration and SDS Polyacrylamide Electrophoresis Analysis

1977 ◽  
Author(s):  
N. Alkjaersig ◽  
A. Davies ◽  
A. Fletcher

The proteolysis of purified human fibrinogen, stabilized and non-stabilized fibrin by plasmin were investigated by gel filtration analysis and SDS Polyacrylamide electrophoresis of the reaction products. Plasmin proteolysis of fibrinogen followed the sequential steps previously reported and the two analytical methods yielded concordant results. Large molecular weight proteolysis products, of substantially greater molecular weight than native fibrinogen, were identified by gel filtration analysis following dissolution of stabilized and non-stabilized fibrin clots; with further incubation with plasmin, these proteolysis products gradually diminished in size. On the other hand, SDS Polyacrylamide electrophoresis of these fibrin digests demonstrated that while non-stabilized fibrin yielded breakdown products similar in size to those obtained after proteolysis of fibrinogen, stabilized fibrin digests showed moieties of greater molecular size estimated to be of molecular weight 400, 000 to 800, 000. The final breakdown products of stabilized fibrin differed from those of fibrinogen and non-stabilized fibrin in that fragment D was present in the “double D” cross-linked form.

1977 ◽  
Vol 38 (02) ◽  
pp. 0524-0535 ◽  
Author(s):  
Norma Alkjaersig ◽  
Andrew Davies ◽  
Anthony Fletcher

SummaryThe proteolysis of purified human fibrinogen, stabilized and non-stabilized fibrin by plasmin were investigated by gel filtration analysis and SDS polyacrylamide electrophoresis of the reaction products. Plasmin proteolysis of fibrinogen followed the sequential steps previously reported and the two analytical methods yielded concordant results. Large molecular weight proteolysis products, of substantially greater molecular weight than native fibrinogen, were identified by gel filtration analysis following dissolution of stabilized and non-stabilized fibrin clots; with further incubation with plasmin, these proteolysis products gradually diminished in size. On the other hand, SDS polyacrylamide electrophoresis of these fibrin digests demonstrated that while non-stabilized fibrin yielded breakdown products similar in size to those obtained after proteolysis of fibrinogen, stabilized fibrin digests showed moieties of greater molecular size estimated to be of molecular weight 400,000 to 800,000. The final breakdown products of stabilized fibrin differed from those of fibrinogen and nonstabilized fibrin in that fragment D was present in the “double D” cross-linked form.


1982 ◽  
Vol 47 (03) ◽  
pp. 197-202 ◽  
Author(s):  
Kurt Huber ◽  
Johannes Kirchheimer ◽  
Bernd R Binder

SummaryUrokinase (UK) could be purified to apparent homogeneity starting from crude urine by sequential adsorption and elution of the enzyme to gelatine-Sepharose and agmatine-Sepharose followed by gel filtration on Sephadex G-150. The purified product exhibited characteristics of the high molecular weight urokinase (HMW-UK) but did contain two distinct entities, one of which exhibited a two chain structure as reported for the HMW-UK while the other one exhibited an apparent single chain structure. The purification described is rapid and simple and results in an enzyme with probably no major alterations. Yields are high enough to obtain purified enzymes for characterization of UK from individual donors.


Soil Research ◽  
1969 ◽  
Vol 7 (3) ◽  
pp. 229 ◽  
Author(s):  
JHA Butler ◽  
JN Ladd

Humic acids extracted from soil with sodium pyrophosphate have greater proportions of lower molecular weight material, less acid-hydrolysable amino acid nitrogen contents, but greater carboxyl contents and extinction values (260 and 450 nm) than humic acids extracted subsequently from the same sample with alkali. Humic acids extracted with alkali from fresh soil samples have intermediate values. Extinction values at 260 nm are directly correlated with carboxyl contents for a given soil. Different crop histories have no significant effect on the measured properties of the extracted humic acids. An alkali-extracted humic acid has been fractionated by gel filtration into seven fractions of different nominal molecular weight ranges. As the molecular weights of the fractions increase, both aliphatic C-H (based on infrared absorption at 2900 cm-1) and acid-hydrolysable amino acid contents increase, whereas extinction values at 260 nm and carboxyl contents decrease. The infrared spectra of the high molecular weight fractions have peaks at 1650 and 1510 cm-1 which correlate with acid-hydrolysable amino acid contents and which correspond to amide I and II bands of peptide bonds. Alkaline hydrolysis to split peptide bonds eliminates both these peaks. The spectra also have peaks at 1720 and 1210 cm-1 which correlate with the carboxyl content.


1972 ◽  
Vol 130 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Colin H. Self ◽  
P. David J. Weitzman

Two isoenzymes of NADP-linked isocitrate dehydrogenase have been identified in Acinetobacter lwoffi and have been termed isoenzyme-I and isoenzyme-II. The isoenzymes may be separated by ion-exchange chromatography on DEAE-cellulose, by gel filtration on Sephadex G-200, or by zonal ultracentrifugation in a sucrose gradient. Low concentrations of glyoxylate or pyruvate effect considerable stimulation of the activity of isoenzyme-II. The isoenzymes also differ in pH-dependence of activity, kinetic parameters, stability to heat or urea and molecular size. Whereas isoenzyme-I resembles the NADP-linked isocitrate dehydrogenases from other organisms in having a molecular weight under 100000, isoenzyme-II is a much larger enzyme (molecular weight around 300000) resembling the NAD-linked isocitrate dehydrogenases of higher organisms.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1989 ◽  
Vol 256 (2) ◽  
pp. G312-G318
Author(s):  
J. Cotting ◽  
T. Zysset ◽  
J. Reichen

To study immediate events during extrahepatic cholestasis, we investigated the effect of short-term biliary obstruction on the bioelectrical sinusoidal-canalicular barrier in the rat using molecular weight-matched uncharged and negatively charged inert solute pairs. The bioelectrical barrier averaged -22 +/- 5 and -18 +/- 4 mV (NS) using the pair carboxy-/methoxyinulin and ferrocyanide/sucrose, respectively. After a 20-min biliary obstruction both decreased by 61 and 11%, respectively, but only the large molecular weight pair (the inulins) returned to base line after release of the obstruction. Inert solute clearances were increased after short biliary obstruction depending on molecular size and negative charge (ferrocyanide greater than sucrose greater than carboxyinulin greater than inulin), suggesting that both permeability and bioelectrical barriers were affected by obstruction. The hepatic extraction in vivo of a passively transported drug not excreted into bile (D-propranolol) was not affected by obstruction, whereas that of an actively transported drug (glycocholate) decreased from 66 +/- 8 to 41 +/- 20% during biliary obstruction (P less than 0.01). Unidirectional transfer of glycocholate was not affected by short-term biliary obstruction in the situ perfused rat liver; however, 2 min after [14C]glycocholate administration, increased return was observed in hepatic venous effluent in obstructed animals. Our findings demonstrate a loss of the bioelectrical barrier immediately after short-term biliary obstruction. Decreased hepatic extraction in the view of unaltered sinusoidal uptake demonstrates regurgitation of bile into blood during short-term biliary obstruction.


1980 ◽  
Vol 26 (1) ◽  
pp. 77-86 ◽  
Author(s):  
S. E. Jensen ◽  
L. Phillippe ◽  
J. Teng Tseng ◽  
G. W. Stemke ◽  
J. N. Campbell

Exocellular protease production was examined in two separate strains of Pseudomonas aeruginosa, one a clinical isolate and the other a laboratory strain. Both strains produced two separate proteases (proteases 1 and 2) which were indistinguishable from one strain to the other. The two proteases were purified by a two-step procedure of gel filtration chromatography followed by ion-exchange chromatography. Proteases 1 and 2 were shown to be distinct serologically and unrelated by physicochemical parameters examined. Protease 1 was the major exocellular protein produced and contributed about 95% of the total protease activity of the culture. It was estimated to have a molecular weight of 34 850 and was also shown to contain 10% glucosamine by weight. Protease 2, in contrast, had an estimated molecular weight of 52750 and contained no detectable carbohydrate. Proteases 1 and 2 were both stimulated by Ca2+, and Mg2+ and inhibited by Co2+Zn2+, and 1,10-o-phenanthroline. Protease 1 was also inhibited by EDTA. In addition to protease activity, both proteases 1 and 2 demonstrated elastase activity as well as a limited collagenase activity. Specificity of the two proteases against synthetic peptides was, however, quite different. Protease 1, but not protease 2, showed a preference for peptide bonds in which the amino group was contributed by an amino acid with a hydrophobic R group.


Author(s):  
R. B. Patel ◽  
A. E. Tami ◽  
M. L. Knothe Tate

The composition of bone is 75% mineral and organic components and 25% fluid; yet until the past 30 years, the fluid component of bone had been ignored [1]. The idea of load induced fluid flow via pressure gradients was hypothesized for the first time by Piekarski et al in his application of Biot’s poroelasticity theory [2]. Poroelasticity theory mathematically describes the sponge-like behavior of bone: when bone is squeezed(loaded) fluid will be induced to flow. However although the concept of load induced fluid flow is well accepted in the orhopedic field, our study is the first to provide quantitative evidence of the effect of load induced fluid on macromolecular transport. Hence the goals of this study include observing permeability of large molecular weight tracers in cortical bone, ii.) comparing molecular size dependence on tracer permeability in cortical bone, and iii.) comparing effects of convective and diffusive transport mechanisms on permeability.


1965 ◽  
Vol 48 (3) ◽  
pp. 493-497
Author(s):  
E E Stinson ◽  
C O Willits

Abstract The colorants of pure maple, cane and maple, refined cane sugar, and light brown sugar sirups were separated into two fractions, one of high- and the other of lowmolecular weights, by means of gel filtration. The ratio of the amounts of high- to the low-molecular weight fractions of pure maple was the lowest of the four sirups and serves as a means of differentiation from these sirups. The color fraction ratio was highest for blended cane-maple sugar sirup. Many maple sirups are also distinguished by a pink band formed on the gel filtration column.


1976 ◽  
Vol 153 (1) ◽  
pp. 119-126 ◽  
Author(s):  
D E Woolley ◽  
J S Tucker ◽  
G Green ◽  
J M Evanson

Biopsy specimens of human gastric mucosa, maintained in culture for 7 days in the absence of serum, released a collagen-degrading enzyme into the medium. The yield of active enzyme reached a maximum after 2-3 days, and viable tissue, capable of protein synthesis, was essential for its production. 2. At 25 degrees C the enzyme attacked undenatured collagen in solution, resulting in a 55% loss of specific viscosity and producing the two products TCA and TCB characteristic of neutral-collagenase action. 3. Electron microscopy of segment-long-spacing crystallites of these reaction products showed the exact cleavage locus of the collagen molecules to be between bands 43 and 44 (I-43). The larger TCA and smaller TCB products were fragments representing 77 and 23% respectively of the length of the collagen molecule. 4. Optimal enzyme activity was observed over the pH range 7.5-8.5 and a mol.wt. of approx. 38000 was derived from gel-filtration studies. 5. The enzyme was shown to be inhibited by the human serum proteins ²2-macroglobulin and a smaller component of mol.wt. approx. 40000; α1-anti-trypsin was not inhibitory. 6. EDTA, 1, 10-phenanthroline, cysteine and dithiothreitol all inhibited collagenase activity. 7. The gastric enzyme has properties similar to other well characterized collagenases, but differences exist with respect to its molecular size and the site of attack on the collagen molecule.


Sign in / Sign up

Export Citation Format

Share Document