Lipid peroxidation of polyunsaturated fatty acids triggers a pro-inflammatory cytokine response in intestinal epithelial cells

2019 ◽  
Author(s):  
J Schwärzler ◽  
L Mayr ◽  
F Grabherr ◽  
I Reitmeier ◽  
T Gehmacher ◽  
...  
Author(s):  
Berta Buey ◽  
Andrea Bellés ◽  
Eva Latorre ◽  
Inés Abad ◽  
María Dolores Pérez ◽  
...  

Milk contains active molecules with important functional properties as the defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effect of lactoferrin, whey and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. Innate immune Toll-like receptors (TLR2, TLR4, and TLR9) mRNA expression, lipid peroxidation (MDA+4-HDA) and protein carbonyl levels were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 hours with different concentrations of lactoferrin, whey or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey were able to reduce the oxidative stress induced by lipopolysaccharide. Respect to TLR receptors, lactoferrin, whey and buttermilk specifically altered the expression of TLR2, TLR4 and TLR9 receptors, with a strong decrease in TLR4 expression. These results suggest that lactoferrin, whey and buttermilk could be interesting potential ingredients for functional foods as they seem to modulate oxidative stress and inflammatory response induced by TLRs activation.


2008 ◽  
Vol 294 (5) ◽  
pp. G1181-G1190 ◽  
Author(s):  
Jing Lu ◽  
Michael S. Caplan ◽  
Dan Li ◽  
Tamas Jilling

We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol ( 3 , 4 , 5 )-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63456 ◽  
Author(s):  
Sabrina Yara ◽  
Jean-Claude Lavoie ◽  
Jean-François Beaulieu ◽  
Edgard Delvin ◽  
Devendra Amre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document