Lewis Basic Amine Catalyzed Aza-Michael Reaction of Indole- and Pyrrole-3-carbaldehydes

Synthesis ◽  
2020 ◽  
Vol 52 (18) ◽  
pp. 2650-2661 ◽  
Author(s):  
Ying-Chun Chen ◽  
Chang-Jiang Xu ◽  
Wei Du ◽  
Łukasz Albrecht

3-Formyl substituted indoles or pyrroles can form HOMO-raised dearomative aza-dienamine-type intermediates with secondary amines, which can undergo direct aza-Michael addition to β-trifluoromethyl enones to afford N-alkylated products efficiently, albeit with low to fair enantioselectivity. In addition, similar asymmetric aza-Michael additions of these heteroarenes and crotonaldehyde are realized under dual catalysis of chiral amines, and the adducts are obtained with moderate to good enantioselectivity.

2020 ◽  
Vol 24 (7) ◽  
pp. 746-773
Author(s):  
Péter Bakó ◽  
Tamás Nemcsok ◽  
Zsolt Rapi ◽  
György Keglevich

: Many catalysts were tested in asymmetric Michael additions in order to synthesize enantioenriched products. One of the most common reaction types among the Michael reactions is the conjugated addition of malonates to enones making it possible to investigate the structure–activity relationship of the catalysts. The most commonly used Michael acceptors are chalcone, substituted chalcones, chalcone derivatives, cyclic enones, while typical donors may be dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, di-tert-butyl and dibenzyl malonates. This review summarizes the most important enantioselective catalysts applied in these types of reactions.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1159
Author(s):  
Eskedar Tessema ◽  
Vijayanath Elakkat ◽  
Chiao-Fan Chiu ◽  
Jing-Hung Zheng ◽  
Ka Long Chan ◽  
...  

Phospha-Michael addition, which is the addition reaction of a phosphorus-based nucleophile to an acceptor-substituted unsaturated bond, certainly represents one of the most versatile and powerful tools for the formation of P-C bonds, since many different electrophiles and P nucleophiles can be combined with each other. This offers the possibility to access many diversely functionalized products. In this work, two kinds of basic pyridine-based organo-catalysts were used to efficiently catalyze phospha-Michael addition reactions, the 4-N,N-dimethylaminopyridinium saccharinate (DMAP·Hsac) salt and a fluorous long-chained pyridine (4-Rf-CH2OCH2-py, where Rf = C11F23). These catalysts have been synthesized and characterized by Lu’s group. The phospha-Michael addition of diisopropyl, dimethyl or triethyl phosphites to α, β-unsaturated malonates in the presence of those catalysts showed very good reactivity with high yield at 80–100 °C in 1–4.5 h with high catalytic recovery and reusability. With regard to significant catalytic recovery, sometimes more than eight cycles were observed for DMAP·Hsac adduct by using non-polar solvents (e.g., ether) to precipitate out the catalyst. In the case of the fluorous long-chained pyridine, the thermomorphic method was used to efficiently recover the catalyst for eight cycles in all the reactions. Thus, the easy separation of the catalysts from the products revealed the outstanding efficacy of our systems. To our knowledge, these are good examples of the application of recoverable organo-catalysts to the DMAP·Hsac adduct by using non-polar solvent and a fluorous long-chained pyridine under the thermomorphic mode in phospha-Michael addition reactions.


2017 ◽  
Vol 41 (3) ◽  
pp. 168-171 ◽  
Author(s):  
Zheng Li ◽  
Jiasheng Li ◽  
Jingya Yang

Seventeen examples of 2,6-diarylspiro[cyclohexane-1,3′-indoline]-2′4-diones were efficiently prepared by the Cs2CO3-catalysed chemoselective double Michael additions of indolin-2-one to divinyl ketones. This method has the advantage of high chemoselectivity, mild reaction conditions, high yield and atom- and step-economy.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1905
Author(s):  
Junyi Chen ◽  
Xutao Ma ◽  
Kevin J. Edgar

Polysaccharide conjugates are important renewable materials. If properly designed, they may for example be able to carry drugs, be proactive (e.g., with amino acid substituents) and can carry a charge. These aspects can be particularly useful for biomedical applications. Herein, we report a simple approach to preparing polysaccharide conjugates. Thiol-Michael additions can be mild, modular, and efficient, making them useful tools for post-modification and the tailoring of polysaccharide architecture. In this study, hydroxypropyl cellulose (HPC) and dextran (Dex) were modified by methacrylation. The resulting polysaccharide, bearing α,β-unsaturated esters with tunable DS (methacrylate), was reacted with various thiols, including 2-thioethylamine, cysteine, and thiol functional quaternary ammonium salt through thiol-Michael addition, affording functionalized conjugates. This click-like synthetic approach provided several advantages including a fast reaction rate, high conversion, and the use of water as a solvent. Among these polysaccharide conjugates, the ones bearing quaternary ammonium salts exhibited competitive antimicrobial performance, as supported by a minimum inhibitory concentration (MIC) study and tracked by SEM characterization. Overall, this methodology provides a versatile route to polysaccharide conjugates with diverse functionalities, enabling applications such as antimicrobial activity, gene or drug delivery, and biomimicry.


2020 ◽  
Vol 92 (1) ◽  
pp. 97-106
Author(s):  
Roberto Figueroa Guíñez ◽  
José G. Santos ◽  
Ricardo A. Tapia ◽  
Jackson J. Alcazar ◽  
Margarita E. Aliaga ◽  
...  

AbstractA series of amino-acid based ionic liquids (Bmim[AA]s) have been synthesized and evaluated as catalysts, in aqueous solution. The results of a kinetic study of the thiol-Michael reaction of L-Cysteine with trans-β-nitrostyrene demonstrated the advantages of using (Bmim[AA]s) as organocatalysts. The benefits include high rate constants; mild reaction conditions; and, a reusable catalyst, which leads to a simple and efficient method for these important kinds of reactions.


2019 ◽  
Vol 10 (39) ◽  
pp. 8990-8994 ◽  
Author(s):  
Shan Tang ◽  
David Milstein

Manganese-catalyzed oxa- and aza-Michael addition to unsaturated nitriles was achieved at room temperature under base-free reaction conditions.


Synthesis ◽  
2017 ◽  
Vol 49 (24) ◽  
pp. 5285-5306 ◽  
Author(s):  
Jaume Vilarrasa ◽  
Alejandro Castro-Alvarez ◽  
Héctor Carneros ◽  
Anna M Costa

Venerable aldol, Michael, and Mannich reactions have undergone a renaissance in the past fifteen years, as a consequence of the development of direct organocatalytic versions, mediated by chiral amines. Chiral enamines are key intermediates in these reactions. This review focuses on the formation of enamines from secondary amines and their relative thermodynamic stability, as well as on the reverse reactions (hydrolysis). Experimental results and predictions based on MO calculations are reviewed to show which enamine forms may predominate in the reaction medium and to compare several secondary amines as organocatalysts.1 Introduction2 Relative Stability of Enamines as Determined Experimentally3 Pyrrolidine Enamines4 Enamines of the Jørgensen–Hayashi Catalyst5 Proline Enamines6 Free Enthalpies and Polar Solvent Effects7 Comparison of Organocatalysts8 Summary and Outlook9 Appendix


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1408 ◽  
Author(s):  
Konuray ◽  
Fernández-Francos ◽  
Ramis ◽  
Serra

A novel set of dual-curable multiacetoacetate-multiacrylate-divinyl sulfone ternary materials with versatile and manipulable properties are presented. In contrast to common dual-curing systems, the first stage polymer herein consists of a densely crosslinked, high Tg network as a result of base-catalyzed multiacetoacetate-divinyl sulfone Michael addition. A more flexible secondary network forms after base-catalyzed Michael addition of remaining multiacetoacetate to multiacrylate. Curing is truly sequential as the rates of the two Michael additions are significantly different. Curing kinetics were analyzed using differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). The materials at each curing stage were characterized using dynamic mechanical analysis (DMA) and SEM. Although some phase separation was observed in certain formulations, the incompatibilities were minimized when the molar percentage of the acetoacetate-divinyl sulfone polymer network was above 75%. Furthermore, the environmental scanning electron microscopy (ESEM) images of these materials show that the more flexible acetoacetate-acrylate phase is dispersed in the form of polymeric spheres within the rigid acetoacetate-divinyl sulfone matrix. This unique dual microstructure can potentially render these materials highly resilient in applications requiring densely crosslinked polymer architectures with enhanced toughness.


Sign in / Sign up

Export Citation Format

Share Document