scholarly journals FEM Analysis Applied to OT Bridge Abutment with Seeger Retention System

Author(s):  
Gabriele Cervino ◽  
Marco Cicciù ◽  
Simone Fedi ◽  
Dario Milone ◽  
Luca Fiorillo

Abstract Objective The purpose of this investigation is to highlight the technical components of a new kind of screw-retained dental implant prosthesis. The hypothesis is whether the OT Bridge (Rhein 83 S.R.L.; Bologna, Italy) system could be applied without secondary screw in the “all-on-four” retention system, thanks to the presence of an internal seeger. Materials and Methods By using engineering device such as finite element method (FEM) and von Mises investigation, it has been studied how the fixed prosthodontics for full-arch retention can be influenced by the presence of the screw for stabilizing it. Results In a dental implant, one model with four different configurations of the full-arch prosthesis retainer and the seeger has been investigated and then examined in contrast with or without the passant screw for locking the system. The experiments of this virtual study highlighted different features and mechanical behaviors of prosthodontic attachments. Conclusion The first two configurations, respectively those in which there are four and three connection screws, are safe and predictable. Therefore, the presence of the seeger significantly improves the stability and the retention of the whole prosthesis.

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
M. Cicciù ◽  
G. Cervino ◽  
E. Bramanti ◽  
F. Lauritano ◽  
G. Lo Gudice ◽  
...  

Prosthetic rehabilitation of total edentulous jaws patients is today a common technique that clinicians approach in their daily practice. The use of dental implants for replacing missing teeth is going to be a safe technique and the implant-prosthetic materials give the possibility of having long-term clinical success. Aim of this work is to evaluate the mechanical features of three different prosthetic retention systems. By applying engineering systems of investigations like FEM and von Mises analyses, how the dental implant material holds out against the masticatory strength during the chewing cycles has been investigated. Three common dental implant overdenture retention systems have been investigated. The ball attachment system, the locator system, and the common dental abutment have been processed by Ansys Workbench 15.0 and underwent FEM and von Mises investigations. The elastic features of the materials used in the study have been taken from recent literature data. Results revealed different response for both types of device, although locator system showed better results for all conditions of loading. The data of this virtual model show all the features of different prosthetic retention systems under the masticatory load. Clinicians should find the better prosthetic solution related to the patients clinical condition in order to obtain long-term results.


2020 ◽  
Vol 20 (08) ◽  
pp. 2050053
Author(s):  
SAHAND KARGARNEJAD ◽  
FARZAN GHALICHI ◽  
MOHAMMAD POURGOL-MOHAMMAD ◽  
I. Z. OSKUI ◽  
ATA GARAJEI

Rehabilitation of major mandibular defects after tumor resection has become a serious challenge for surgeons. In this research, four various models were designed to repair a critical mandibular lateral defect. Biomechanical behavior of the models was assessed by Finite Element Method. These models are including Fibular-Free Flap (FFF), Customized Prosthesis (CP), Tray Implant without Bone Graft (TI-wo-BG), and Tray Implant with Bone Graft (TI-w-BG). FFF is a subset of microvascular free flap technique in which some segments of patient’s fibula bone are used to restore mandibular defects. CP is a hollow and light prosthesis which is fabricated using Additive Manufacturing technology from Ti alloy powder. TI-wo-BG is similar to a crib which is designed according to the geometry of the patient’s mandible. TI-w-BG, in fact, is a TI-wo-BG which is filled with small cortico-cancellous chips in order to benefit potential profit of bone grafting. The chewing operation and loading on the mandible was simulated considering the three mandibular muscular forces including masseter, medial pterygoid, and temporalis. The result of FEM analysis of TI-wo-BG and TI-w-BG showed that in both models, screw number 6 endured a strain of 5684 and 2852[Formula: see text][Formula: see text]m/m which exceeded pathological and mild overload risk, respectively. This may increase the probability of screw loosening and system failure. The results proved the stability of the FFF and CP models. In addition, it can be concluded that stress and strain on the screw’s interfaces can decrease by improving the plate and increasing the friction at the interface of plate, bone and screw.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 592 ◽  
Author(s):  
Marco Cicciù ◽  
Gabriele Cervino ◽  
Dario Milone ◽  
Giacomo Risitano

The objective of this investigation was to analyze the mechanical features of two different prosthetic retention devices. By applying engineering tools like the finite element method (FEM) and Von Mises analyses, we investigated how dental implant devices hold out against masticatory strength during chewing cycles. Two common dental implant overdenture retention systems were analyzed and then compared with a universal—common dental abutment. The Equator® attachment system and the Locator® arrangement were processed using the FEM Ansys® Workbench. The elastic features of the materials used in the study were taken from recent literature. Results revealed different responses for both the devices, and both systems guaranteed a perfect fit over the axial load. However, the different design and shape involves the customized use of each device for a typical clinical condition of applying overdenture systems over dental implants. The data from this virtual model showed different features and mechanical behaviors of the overdenture prosthodontics attachments. A three-dimensional system involved the fixture, abutment, and passant screws of three different dental implants that were created and analyzed. Clinicians should find the best prosthetic balance to better distribute the stress over the component, and to guarantee the patients clinical long-term results.


2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2007 ◽  
Vol 345-346 ◽  
pp. 1437-1440
Author(s):  
Tae Hyun Baek ◽  
Seung Kee Koh ◽  
Jie Cheng

Pre-produced triplate transition joint assemblies are widely used in shipbuilding industry to make welds between aluminum and steel for a number of years now. The straight-shaped transition joint assemblies are bent during shipbuilding. So it is necessary to study the residual stresses created by punch forming, which would have heavy effects on the quality of structural parts. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, ABAQUS was used as the main tool to simulate the residual stresses in a triplate transition joint after unloading. Punch-pressing was carried to simulate bending moment in ABAQUS. The triplate is consisted of baselayer (steel: Lloyd’s Shipplate Gr. A), interlayer (pure aluminum: Al99.5) and superlayer (Al-Mg alloy: AlMg4.5Mn). Results from the ABAQUS analysis showed that increasing the radius of punch significantly reduced the von Mises residual stresses in steel. Changes of von Mises residual stresses in interlayer (Al99.5) and superlayer (AlMg4.5Mn) were negligible.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Mahimaa Gupta ◽  
Saumyendra V. Singh ◽  
Deeksha Arya ◽  
Brijesh Mishra ◽  
Rishabh Keshri ◽  
...  

2017 ◽  
Vol 17 (04) ◽  
pp. 1750074
Author(s):  
MD ABU HASAN ◽  
PANOS S. SHIAKOLAS

This study compares the biomechanical behavior of a mandibular full-arch fixed implant prosthesis with four implants under lingualized and conventional balanced occlusion schemes. The acrylic resin denture was supported by four titanium cylindrical implants and connected via a titanium prosthetic rectangular bar. Orthotropic material was used for the cortical and cancellous bones. The applied loadings were vertical and bilateral: 100[Formula: see text]N on first molar and 50[Formula: see text]N on first and second premolars each. For the lingualized balanced occlusion, the loadings were applied in central fossae of the posterior teeth, whereas for the conventional balanced occlusion the loadings were applied in central fossae and buccal cusps. The maximum von-Mises stresses for the lingualized and conventional balanced schemes were 301[Formula: see text]MPa and 25[Formula: see text]MPa, respectively, and were located at the neck of the posterior implants. In the denture teeth, the highest stress was located at the beginning of the cantilever extension. In the cortical bone, according to Tsai–Wu criterion, the failure index for the lingualized balanced occlusion was 1.10 and for the conventional balanced occlusion was 0.83. Thus, the conventional balanced occlusion demonstrated more favorable stress distribution in the implants and the cortical bone than the lingualized balanced occlusion.


2018 ◽  
Vol 7 (4.26) ◽  
pp. 190 ◽  
Author(s):  
Nur Fatin Izzati Ibrahim ◽  
Ruslizam Daud ◽  
Muhammad Khairul Ali Hassan ◽  
Noor Ali Hassan ◽  
Noor Alia Md Zain ◽  
...  

Axial stiffness is the most important factor in stability. It is known that any changes in the diameter of any components of the frame will either increase or decrease the axial stiffness of the fixation. The model of implant and bone will be variety as the variables changes. Current studies states that ring stability are one of the most important factors in ensuring fractured bones to have a successful re-union. In circular external fixation, the stability of the pin-bone interaction is influenced by the stability of the fixation frame where the major component is the rings. The objective is to study the finite element analysis (FEA) of the external fixator assembled in human diaphysis under compression force with different materials of the exoskeleton which are stainless steel, titanium alloy, magnesium alloy and carbon fiber. The results obtained show the mechanical strength of each material where it will be used to compare the value of von-Mises stress, stiffness and total deformation to acquire the best suitable ring diameter and material. Based on the result, as the diameter of the ring increases, the stiffness of the ring will be decreased. 


Author(s):  
Lasinta Ari Nendra Wibawa

Crane is one of the heavy equipment that is widely used in the industry. The crane functions as a tool for lifting heavy loads and moving them from one place to another vertically and horizontally. In the LAPAN Garut office, it is used for the rocket assembly process. The study investigates the design and analysis of von Mises stress of crane structure with a capacity of 10 tons using mild steel material. The investigation was carried out numerically using Autodesk Inventor Professional 2017. The simulation results showed the Crane structure had a von Mises stress, deformation, mass, and safety factor respectively 63.73 MPa; 2,173 mm; 1.508,53 kg; and 3.25.Keywords: autodesk inventor 2017; finite element method; mild steel; stress analysis; von Mises stressABSTRAKCrane merupakan salah satu alat berat yang banyak digunakan dalam suatu industri. Crane berfungsi sebagai alat untuk mengangkat beban berat dan memindahkannya dari satu tempat ke tempat lain secara vertikal maupun horisontal. Di LAPAN Garut, Crane digunakan untuk proses perakitan roket. Penelitian ini meneliti tentang perancangan dan analisis tegangan von Mises struktur Crane dengan kapasitas 10 Ton menggunakan material mild steel. Analisis dilakukan secara numerik dengan menggunakan perangkat lunak Autodesk Inventor Professional 2017. Hasil simulasi menunjukkan struktur Crane memiliki tegangan von Mises, deformasi, massa, dan factor keamanan berturut-turut sebesar 63,73 MPa; 2,173 mm; 1.508,53 kg; dan 3,25.


Sign in / Sign up

Export Citation Format

Share Document