Specific Cognitive Changes due to Hippocalcin Alterations? A Novel Familial Homozygous Hippocalcin Variant Associated with Inherited Dystonia and Altered Cognition

2021 ◽  
Author(s):  
Sandy Siegert ◽  
Wolfgang M. Schmidt ◽  
Thomas Pletschko ◽  
Reginald E. Bittner ◽  
Sonja Gobara ◽  
...  

Abstract Background Recent research suggested an hippocalcin (HPCA)-related form of DYT2-like autosomal recessive dystonia. Two reports highlight a broad spectrum of the clinical phenotype. Here, we describe a novel HPCA gene variant in a pediatric patient and two affected relatives. Methods Whole exome sequencing was applied after a thorough clinical and neurological examination of the index patient and her family members. Results of neuropsychological testing were analyzed. Results Whole exome sequencing revealed a novel homozygous missense variant in the HPCA gene [c.182C>T p.(Ala61Val)] in our pediatric patient and the two affected family members. Clinically, the cases presented with dystonia, dysarthria, and jerky movements. We observed a particular cognitive profile with executive dysfunctions in our patient, which corresponds to the cognitive deficits that have been observed in the patients previously described. Conclusion We present a novel genetic variant of the HPCA gene associated with autosomal recessive dystonia in a child with childhood-onset dystonia supporting its clinical features. Furthermore, we propose specific HPCA-related cognitive changes in homozygous carriers, underlining the importance of undertaking a systematic assessment of cognition in HPCA-related dystonia.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Amjad Khan ◽  
Rongrong Wang ◽  
Shirui Han ◽  
Muhammad Umair ◽  
Safdar Abbas ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are large group of heterogeneous genetic diseases, having a hallmark feature of muscle weakness. Pathogenic mutations in the gene encoding the giant skeletal muscle protein titin (TTN) are associated with several muscle disorders, including cardiomyopathy, recessive congenital myopathies and limb-girdle muscular dystrophy (LGMD) type10. The phenotypic spectrum of titinopathies is expanding, as next generation sequencing (NGS) technology makes screening of this large gene possible. Aim This study aimed to identify the pathogenic variant in a consanguineous Pakistani family with autosomal recessive LGMD type 10. Methods DNA from peripheral blood samples were obtained, whole exome sequencing (WES) was performed and several molecular and bioinformatics analysis were conducted to identify the pathogenic variant. TTN coding and near coding regions were further amplified using PCR and sequenced via Sanger sequencing. Results Whole exome sequencing analysis revealed a novel homozygous missense variant (c.98807G > A; p.Arg32936His) in the TTN gene in the index patients. No heterozygous individuals in the family presented LGMD features. The variant p.Arg32936His leads to a substitution of the arginine amino acid at position 32,936 into histidine possibly causing LGMD type 10. Conclusion We identified a homozygous missense variant in TTN, which likely explains LGMD type 10 in this family in line with similar previously reported data. Our study concludes that WES is a successful molecular diagnostic tool to identify pathogenic variants in large genes such as TTN in highly inbred population.


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
B Kovacs ◽  
U Graf ◽  
I Magyar ◽  
L Baehr ◽  
A Maspoli ◽  
...  

Abstract Funding Acknowledgements none Introduction  Short QT syndrome (SQTS) is a rare, autosomal dominant disease causing ventricular fibrillation and sudden cardiac death. Genetic testing is recommended according to current guidelines. Mutations in KCNQ1, KCNH2, KCNJ2 and more recently SLC4A3 genes have been implicated in SQTS. These genes encode potassium channel subunits and a bicarbonate transporter regulating intracellular pH. A dominant mutation in this transporter can lead to increased intracellular pH and shortened action potential. Purpose  We present a family with a short QT phenotype and recurrent syncope in whom a novel genetic variant was detected by whole-exome sequencing (WES), confirmed by cascade screening. Methods  We performed a thorough work-up of the index patient including medical history, physical examination, 12-lead ECG, echocardiography, stress testing, coronary angiography, flecainide challenge, and genetic testing with NGS. QTc was determined using Bazett’s formula. CS of all 1° and two 2° relatives was performed. Results  The ECG of the index patient showed a QTc of 340ms and characteristics compatible with a SQTS (figure). Clinical work-up was unremarkable. A first genetic search with next generation sequencing focusing on genes that have been previously involved in the pathogenesis of channelopathies detected a rare known heterozygous missense variant in the KCNH2 gene (Arg328Cys, frequency 0.053%), which was predicted to be pathogenic according to various prediction algorithms (Polyphen, SIFT, Align GVGD, mutation taster). ECG screening of all asymptomatic first-degree family members identified a SQT phenotype in the mother (QTc 355ms), but not in the father (QTc 380ms) and sister (410ms). The KCNH2 variant was found in the father and sister but not the affected mother, which excludes this variant as the causative mutation in this family. Therefore, reanalysis of WES data was performed and revealed a novel heterozygous missense variant p.(Arg370Cys) in the SLC4A3 gene, recently associated with SQTS. A mutation in this gene at the same position has been previously reported in SQTS. The p.(Arg370Cys) mutation was found in the mother but not in the unaffected father or sister. Furthermore the mutation was present in two affected maternal uncles (QTc 319ms and 342ms) supporting the assumption that this was the causative mutation in this family. Conclusions  A novel genetic variant in the SLC4A3 gene leading to sQT phenotype could be detected using WES and cascade screening. Predictive bioinformatic algorithms to assess the pathogenicity of missense variants are of limited relevance, but genetic analysis of additional unaffected and affected family members may be instrumental to identify pathogenic DNA sequence variations. Abstract Figure. Pedigree and ECGs of the family


2022 ◽  
Vol 12 ◽  
Author(s):  
Fengyu Che ◽  
Jiangang Zhao ◽  
Yujuan Zhao ◽  
Zhi Wang ◽  
Liyu Zhang ◽  
...  

Aim: To determine the etiology of a Chinese family with thrombocytopenia by analyzing the clinical features and genetic variation.Methods: Clinical profiles and genomic DNA extracts of the family members were collected for the study. Whole exome sequencing and Sanger sequencing was used to detect the associated genetic variation and verify the family co-segregation respectively. Bioinformatics analysis assessed the pathogenicity of missense mutations.Results: The study reported a 3-generation pedigree including eight family members with thrombocytopenia. The platelet counts of the patients were varied, ranging from 38 to 110 × 109/L (reference range: 150–450 x 109/L). The mean volumes and morphology of the sampled platelet were both normal. The bleeding abnormality and mitochondriopathy were not observed in all the patients. Clinical signs of thrombocytopenia were mild. A novel heterozygous missense variant c.79C > T (p.His27Tyr) was identified in CYCS gene associated with autosomal dominant thrombocytopenia.Conclusion: We report the first large family with autosomal dominant non-syndromic thrombocytopenia 4 in a Chinese family, a novel heterozygous missense variant c.79C > T (p.His27Tyr) was identified. The whole exome sequencing is an efficient tool for screening the variants specifically associated with the disease. The finding enriches the mutation spectrum of CYCS gene and laid a foundation for future studies on the correlation between genotype and phenotype.


Author(s):  
Bixia Zheng ◽  
Steve Seltzsam ◽  
Chunyan Wang ◽  
Luca Schierbaum ◽  
Sophia Schneider ◽  
...  

Abstract Background Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT. Methods We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. Results To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. Conclusion We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


2017 ◽  
Vol 176 (5) ◽  
pp. K9-K14 ◽  
Author(s):  
Sandrine Caburet ◽  
Ronit Beck Fruchter ◽  
Bérangère Legois ◽  
Marc Fellous ◽  
Stavit Shalev ◽  
...  

Context PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. Objective As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. Methods Whole-exome sequencing and Sanger sequencing confirmation. Results Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. Conclusions This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo–pituitary axis may play role in the pathogenesis of PCOS.


2017 ◽  
Vol 27 (4) ◽  
pp. 614-624 ◽  
Author(s):  
Monika Weisz Hubshman ◽  
Sanne Broekman ◽  
Erwin van Wijk ◽  
Frans Cremers ◽  
Alaa Abu-Diab ◽  
...  

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Changwei Li ◽  
Michael Francis ◽  
Adrianna Westbrook ◽  
Ruiyuan Zhang ◽  
Ye Shen ◽  
...  

Introduction: Most genetic variants for chronic kidney disease (CKD) have been identified in non-coding regions, with functional roles that are difficult to interpret. Hypothesis: A whole exome sequencing study focusing on coding variants will reveal novel mechanisms of kidney function and CKD. Methods: We performed whole exome sequencing analyses of cystatin C among 29,789 UK Biobank (UKB) participants with further confirmation among 4,297 white and 607 African American participants of the Health and Retirement Study (HRS). Conditional analyses for loci achieving exome-wide significance ( P <3.5х10 -7 ) were conducted in UKB using both the exome (n=29,789) and imputed GWAS data (n=295,122). Genomic findings were tested for relevance to baseline estimated glomerular filtration rate (eGFR) and stringently adjudicated CKD progression events among participants of the Chronic Renal Insufficiency Cohort (CRIC) by race and smoking status, using a base model and a full model ( Table ). Results: We identified a common missense variant, CST9 rs2983640, in a previously reported locus ( CST3 intron rs13038305), of which the minor G allele was associated with lower serum cystatin C level (UKB: beta=-0.03 mg/L, P =7.64х10 -92 ; HRS whites: beta=-0.05 mg/L, P =4.71х10 -6 ; HRS African Americans: beta=-0.03 mg/L, P =0.64; and multi-ethnic meta-analysis beta=-0.03 mg/L, P =2.46х10 -91 ). After controlling for the CST3 variant, the G allele was associated with higher cystatin C level (UKB exome: beta=0.003 mg/L, P =0.04; UKB GWAS: beta=0.003 mg/L, P =1.47х10 -10 ). Similar associations were identified in white CRIC participants (direct effect: beta=-0.05 mg/L, P =0.005; conditional effect: beta=0.004 mg/L, P =0.86). The CST9 rs2983640 G allele was associated with lower baseline eGFR (base model beta=-0.33 ml/min/1.73 m 2 , P =1.98х10 -6 ) and higher hazard of developing CKD progression independent of the reported CST3 variant ( Table ). Conclusions: We identified a novel missense variant influencing cystatin C level and CKD progression.


2021 ◽  
Author(s):  
Rui Zhang ◽  
Yajing Hao ◽  
Ying Xu ◽  
Jiale Qin ◽  
Yanfang Wang ◽  
...  

Abstract Background: Isolated sulfite oxidase deficiency (ISOD) is the rarest types of life-threatening neurometabolic disorders characterized by neonatal intractable seizures and severe developmental delay with an autosomal recessive mode of inheritance. ISOD is extremely rare and till date only 32 mutations have been identified and reported worldwide. Germline mutation in SUOX gene causes ISOD. Methods: Here, we investigated a 5-days old Chinese female child, presented with intermittent tremor or seizures of limbs, neonatal encephalopathy, subarachnoid cyst and haemorrhage, dysplasia of corpus callosum, neonatal convulsion, respiratory failure, cardiac failure, hyperlactatemia, severe metabolic acidosis, hyperglycemia, hyperkalemia, moderate anemia, atrioventricular block and complete right bundle branch block. Results: Whole exome sequencing identified a novel homozygous transition (c.1227G>A) in exon 6 of the SUOX gene in the proband. This novel homozygous variant leads to the formation of a truncated sulfite oxidase (p.Trp409*) of 408 amino acids. Hence, it is a loss-of-function variant. Proband’s father and mother is carrying this novel variant in a heterozygous state. This variant was not identified in 200 ethnically matched normal healthy control individuals. Conclusions: Our study not only expand the mutational spectrum of SUOX gene associated ISOD, but also strongly suggested the application of whole exome sequencing for identifying candidate genes and novel disease-causing mutations.


Sign in / Sign up

Export Citation Format

Share Document