Ex Vivo Biomechanical Assessment of a Novel Multi-Strand Repair of Canine Tendon Lacerations

Author(s):  
Chiara P. Curcillo ◽  
Daniel J. Duffy ◽  
Yi-Jen Chang ◽  
George E. Moore

Abstract Objective This study aimed to evaluate the effect of increasing the number of suture strands traversing the transection site, level of suture purchase and depth of suture penetrance on the biomechanical properties of repaired gastrocnemius tendons. Study Design Thirty-eight adult cadaveric gastrocnemius tendons were randomized, transected and repaired with either two-, four- or six-strand locking multi-level repair. Tensile loads required to create a 1 and 3 mm gap, yield, peak and failure loads and failure mode were analysed. Significance was set at p < 0.05. Results Mean ± standard deviation yield, peak and failure force for six-strand repairs was 90.6 ± 22.1 N, 111.4 ± 15.2 N and 110.3 ± 15.1 N respectively. This was significantly greater compared with both four-strand (55.0 ± 8.9 N, 72.9 ± 7.8 N and 72.1 ± 8.2 N) and two-strand repairs (24.7 ± 8.3 N, 36.5 ± 6.0 N and 36.1 ± 6.3 N) respectively (p < 0.001). Occurrence of 3 mm gap formation was significantly less using six-strand repairs (p < 0.001). Mode of failure did not differ between groups with all repairs (36/36; 100%) failing by suture pull-through. Conclusion Pattern modification by increasing the number of suture strands crossing the repair site, increasing points of suture purchase from the transection site and depth of suture penetrance is positively correlated with repair site strength while significantly reducing the occurrence of gap formation in a canine cadaveric model. Additional studies in vivo are recommended to evaluate their effect on tendinous healing, blood supply and glide resistance prior to clinical implementation.

2020 ◽  
Vol 33 (03) ◽  
pp. 205-211 ◽  
Author(s):  
Christina J. Cocca ◽  
Daniel J. Duffy ◽  
Mariana E. Kersh ◽  
George E. Moore

Abstract Objective This article evaluates the effect of an interlocking horizontal mattress epitendinous suture (IHMES) in addition to a three-loop pulley (3LP) core suture for canine tendon repair. Study Design Twenty-eight cadaveric common calcaneal tendons were randomized, sharply transected and repaired with either a 3LP or 3LP + IHMES. Tensile loads required to create a 1- and 3-mm gap, yield, peak and failure loads, and mode of failure were analysed. Significance was set at p < 0.05. Results Mean ± standard deviation yield and failure force for 3LP + IHMES was 178.0 ± 45.3 N and 242.1 ± 47.8 N, respectively, which was significantly greater compared with 3LP alone, 97.9 ± 36.2 N and 119.3 ± 35.6 N (p < 0.0001). Occurrence of 3-mm gap formation was significantly less in the 3LP + IHMES group (p < 0.013). Mode of failure was significantly different between the groups (p < 0.001) with 3LP + IMHES patterns failing by suture breakage (13/14) compared with suture pull-through in the 3LP (11/14). Conclusion Addition of an epitendinous suture pattern significantly reduced gap formation between tendon ends and significantly increased loads at yield (1.8 × ), peak (2.0 × ) and failure (2.0 × ) force of repairs. Use of an epitendinous suture should be considered to significantly increase biomechanical strength of repairs; however, further in vivo testing is necessary to evaluate its effect on tendinous blood supply.


2021 ◽  
Vol 22 (2) ◽  
pp. 674
Author(s):  
Óscar Darío García-García ◽  
Marwa El Soury ◽  
David González-Quevedo ◽  
David Sánchez-Porras ◽  
Jesús Chato-Astrain ◽  
...  

Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Clare Y. L. Chao ◽  
Gabriel Y. F. Ng ◽  
Kwok-Kuen Cheung ◽  
Yong-Ping Zheng ◽  
Li-Ke Wang ◽  
...  

An evaluation of wound mechanics is crucial in reflecting the wound healing status. The present study examined the biomechanical properties of healing rat skin wounds in vivo and ex vivo. Thirty male Sprague-Dawley rats, each with a 6 mm full-thickness circular punch biopsied wound at both posterior hind limbs were used. The mechanical stiffness at both the central and margins of the wound was measured repeatedly in five rats over the same wound sites to monitor the longitudinal changes over time of before wounding, and on days 0, 3, 7, 10, 14, and 21 after wounding in vivo by using an optical coherence tomography-based air-jet indentation system. Five rats were euthanized at each time point, and the biomechanical properties of the wound tissues were assessed ex vivo using a tensiometer. At the central wound bed region, the stiffness measured by the air-jet system increased significantly from day 0 (17.2%), peaked at day 7 (208.3%), and then decreased progressively until day 21 (40.2%) as compared with baseline prewounding status. The biomechanical parameters of the skin wound samples measured by the tensiometer showed a marked reduction upon wounding, then increased with time (all p < 0.05). On day 21, the ultimate tensile strength of the skin wound tissue approached 50% of the normal skin; while the stiffness of tissue recovered at a faster rate, reaching 97% of its prewounded state. Our results suggested that it took less time for healing wound tissues to recover their stiffness than their maximal strength in rat skin. The stiffness of wound tissues measured by air-jet could be an indicator for monitoring wound healing and contraction.


2015 ◽  
Vol 35 (3) ◽  
pp. 198-205 ◽  
Author(s):  
Maria J. Fradinho ◽  
Ana C. Vale ◽  
Nuno Bernardes ◽  
Rui M. Caldeira ◽  
Maria Fátima Vaz ◽  
...  

Author(s):  
Yi-Jen Chang ◽  
Daniel J. Duffy ◽  
George E. Moore

Abstract OBJECTIVE To determine the effects of 2-, 4-, 6- and 8-strand suture repairs on the biomechanical properties of canine gastrocnemius tenorrhaphy constructs in an ex vivo model. SAMPLE 56 cadaveric gastrocnemius musculotendinous units from 28 adult large-breed dogs. PROCEDURES Tendons were randomly assigned to 4 repair groups (2-, 4-, 6- or 8-strand suture technique; n = 14/group). Following tenotomy, repairs were performed with the assigned number of strands of 2-0 polypropylene suture in a simple interrupted pattern. Biomechanical testing was performed. Yield, peak, and failure loads, the incidence of 1- and 3-mm gap formation, forces associated with gap formation, and failure modes were compared among groups. RESULTS Yield, peak, and failure forces differed significantly among groups, with significantly greater force required as the number of suture strands used for tendon repair increased. The force required to create a 1- or 3-mm gap between tendon ends also differed among groups and increased significantly with number of strands used. All constructs failed by mode of suture pull-through. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that increasing the number of suture strands crossing the repair site significantly increases the tensile strength of canine gastrocnemius tendon repair constructs and their resistance to gap formation. Future studies are needed to assess the effects of multistrand suture patterns on tendon glide function, blood supply, healing, and long-term clinical function in dogs to inform clinical decision-making.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
William McCartney ◽  
Ciprian Ober ◽  
Maria Benito ◽  
Bryan MacDonald

Abstract Background The common calcanean tendon (Achilles tendon) is the strongest and largest tendon and is one of the most commonly affected by spontaneous rupture. Different suture techniques are used to repair the tendon rupture. We compare the biomechanical properties of three different modalities of suture pattern in a mechanical experiment in rabbits with the purpose of evaluating the use of polypropylene mesh augmentation for Achilles tendon repair to find out the best surgical option. Methods The study tests single cycle to failure tensile strength characteristics of three different combinations of the 3-loop pulley (3-LP) suture technique with polypropylene mesh, and statistically compares the biomechanical properties as the maximum load at failure for all 3-LP repair. Results The normal Achilles tendon—control group—failed at a mean load of 25.5 + 13.6; the experimental groups failed at a significantly lower load (p < 0.001), with the group of 3-LP suture with polypropylene mesh included in the suture being the more similar to controls, but all the groups exhibited statistically significant differences with regard to normal tendons (p < 0.001). The distance at which each group failed was also significant between control and experimental groups (p < 0.001) with the exception of the suture-only group and the group with the mesh over the suture (p = 0.15). Conclusion Results from this study suggest that incorporating the mesh within the suture provides benefit to the Achilles tendon repair by improving strength and resistance to pull through. However, further in vivo studies will be necessary to confirm these results and incorporate this technique to the routine human and veterinary surgery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cédric H. G. Neutel ◽  
Giulia Corradin ◽  
Pauline Puylaert ◽  
Guido R. Y. De Meyer ◽  
Wim Martinet ◽  
...  

Measuring arterial stiffness has recently gained a lot of interest because it is a strong predictor for cardiovascular events and all-cause mortality. However, assessing blood vessel stiffness is not easy and the in vivo measurements currently used provide only limited information. Ex vivo experiments allow for a more thorough investigation of (altered) arterial biomechanical properties. Such experiments can be performed either statically or dynamically, where the latter better corresponds to physiological conditions. In a dynamic setup, arterial segments oscillate between two predefined forces, mimicking the diastolic and systolic pressures from an in vivo setting. Consequently, these oscillations result in a pulsatile load (i.e., the pulse pressure). The importance of pulse pressure on the ex vivo measurement of arterial stiffness is not completely understood. Here, we demonstrate that pulsatile load modulates the overall stiffness of the aortic tissue in an ex vivo setup. More specifically, increasing pulsatile load softens the aortic tissue. Moreover, vascular smooth muscle cell (VSMC) function was affected by pulse pressure. VSMC contraction and basal tonus showed a dependence on the amplitude of the applied pulse pressure. In addition, two distinct regions of the aorta, namely the thoracic descending aorta (TDA) and the abdominal infrarenal aorta (AIA), responded differently to changes in pulse pressure. Our data indicate that pulse pressure alters ex vivo measurements of arterial stiffness and should be considered as an important variable in future experiments. More research should be conducted in order to determine which biomechanical properties are affected due to changes in pulse pressure. The elucidation of the underlying pulse pressure-sensitive properties would improve our understanding of blood vessel biomechanics and could potentially yield new therapeutic insights.


2018 ◽  
Vol 29 (4) ◽  
pp. 461-469 ◽  
Author(s):  
Amro Al-Habib ◽  
Abdulrahman Albakr ◽  
Abdullah Al Towim ◽  
Metab Alkubeyyer ◽  
Abdullah Abu Jamea ◽  
...  

OBJECTIVEEvaluation of living tissue elasticity has wide applications in disease characterization and prognosis prediction. Few previous ex vivo attempts have been made to characterize spinal cord elasticity (SCE). Recently, tissue elasticity assessment has been clinically feasible using ultrasound shear wave elastography (SWE). The current study aims to characterize SCE in healthy dogs, in vivo, utilizing SWE, and to address SCE changes during compression.METHODSTen Greyhound dogs (mean age 14 months; mean weight 14.3 kg) were anesthetized and tracheally intubated, with hemodynamic and neurological monitoring. A 3-level, midcervical laminectomy was performed. SCE was assessed at baseline. Next, 8- and 13-mm balloon compressions were sequentially applied ventral to the spinal cord.RESULTSThe mean SCE was 18.5 ± 7 kPa. Elasticity of the central canal, pia mater, and dura mater were 21.7 ± 9.6 kPa, 26.1 ± 14.8 kPa, and 63.2 ± 11.5 kPa, respectively. As expected, the spinal cord demonstrated less elasticity than the dura mater (p < 0.0001) and pia mater (trend toward significance p = 0.08). Notably, the 13-mm balloon compression resulted in a stiffer spinal cord than at baseline (233 ± 73 kPa versus 18.5 ± 7 kPa, p < 0.0001) and 8-mm balloon compression (233 ± 73 kPa versus 185 ± 68 kPa, p < 0.048).CONCLUSIONSIn vivo SCE evaluation using SWE is feasible and comparable to earlier reports, as demonstrated by physical sectioning of the spinal cord. The compressed spinal cord is stiffer than a free spinal cord, with a linear increase in SCE with increasing mechanical compression. Knowledge of the biomechanical properties of the spinal cord including SCE has potential implications for disease management and prognosis.


Author(s):  
Sam P. Tarassoli ◽  
Zita M. Jessop ◽  
Thomas Jovic ◽  
Karl Hawkins ◽  
Iain S. Whitaker

Purpose: Bioprinting is becoming an increasingly popular platform technology for engineering a variety of tissue types. Our aim was to identify biomaterials that have been found to be suitable for extrusion 3D bioprinting, outline their biomechanical properties and biocompatibility towards their application for bioprinting specific tissue types. This systematic review provides an in-depth overview of current biomaterials suitable for extrusion to aid bioink selection for specific research purposes and facilitate design of novel tailored bioinks.Methods: A systematic search was performed on EMBASE, PubMed, Scopus and Web of Science databases according to the PRISMA guidelines. References of relevant articles, between December 2006 to January 2018, on candidate bioinks used in extrusion 3D bioprinting were reviewed by two independent investigators against standardised inclusion and exclusion criteria. Data was extracted on bioprinter brand and model, printing technique and specifications (speed and resolution), bioink material and class of mechanical assessment, cell type, viability, and target tissue. Also noted were authors, study design (in vitro/in vivo), study duration and year of publication.Results: A total of 9,720 studies were identified, 123 of which met inclusion criteria, consisting of a total of 58 reports using natural biomaterials, 26 using synthetic biomaterials and 39 using a combination of biomaterials as bioinks. Alginate (n = 50) and PCL (n = 33) were the most commonly used bioinks, followed by gelatin (n = 18) and methacrylated gelatin (GelMA) (n = 16). Pneumatic extrusion bioprinting techniques were the most common (n = 78), followed by piston (n = 28). The majority of studies focus on the target tissue, most commonly bone and cartilage, and investigate only one bioink rather than assessing a range to identify those with the most promising printability and biocompatibility characteristics. The Bioscaffolder (GeSiM, Germany), 3D Discovery (regenHU, Switzerland), and Bioplotter (EnvisionTEC, Germany) were the most commonly used commercial bioprinters (n = 35 in total), but groups most often opted to create their own in-house devices (n = 20). Many studies also failed to specify whether the mechanical data reflected pre-, during or post-printing, pre- or post-crosslinking and with or without cells.Conclusions: Despite the continued increase in the variety of biocompatible synthetic materials available, there has been a shift change towards using natural rather than synthetic bioinks for extrusion bioprinting, dominated by alginate either alone or in combination with other biomaterials. On qualitative analysis, no link was demonstrated between the type of bioink or extrusion technique and the target tissue, indicating that bioprinting research is in its infancy with no established tissue specific bioinks or bioprinting techniques. Further research is needed on side-by-side characterisation of bioinks with standardisation of the type and timing of biomechanical assessment.


Author(s):  
Jessica L. Corrie ◽  
Daniel J. Duffy ◽  
Yi-Jen Chang ◽  
George E. Moore

Abstract OBJECTIVE To evaluate the effect of knot location on the biomechanical strength and gapping characteristics of ex vivo canine gastrocnemius tenorrhaphy constructs. SAMPLE 36 cadaveric gastrocnemius tendons from 18 adult dogs. PROCEDURES Tendons were randomly assigned to 3 groups (12 tendons/group) and sharply transected and repaired by means of a core locking-loop suture with the knot at 1 of 3 locations (exposed on the external surface of the tendon, buried just underneath the external surface of the tendon, or buried internally between the apposed tendon ends). All repairs were performed with size-0 polypropylene suture. All constructs underwent a single load-to-failure test. Yield, failure, and peak forces, mode of failure, and forces required for 1- and 3-mm gap formation were compared among the 3 knot-location groups. RESULTS Mean yield, failure, and peak forces and mean forces required for 1- and 3-mm gap formation did not differ significantly among the 3 groups. The mode of failure also did not differ significantly among the 3 groups, and the majority (33/36 [92%]) of constructs failed owing to the suture pulling through the tendinous substance. CONCLUSIONS AND CLINICAL RELEVANCE Final knot location did not significantly affect the biomechanical strength and gapping characteristics of canine gastrocnemius tenorrhaphy constructs. Therefore, all 3 evaluated knot locations may be acceptable for tendon repair in dogs. In vivo studies are necessary to further elucidate the effect of knot location in suture patterns commonly used for tenorrhaphy on tendinous healing and collagenous remodeling at the repair site.


Sign in / Sign up

Export Citation Format

Share Document