Effect of knot location on the biomechanical strength and gapping characteristics of ex vivo canine gastrocnemius tenorrhaphy constructs

Author(s):  
Jessica L. Corrie ◽  
Daniel J. Duffy ◽  
Yi-Jen Chang ◽  
George E. Moore

Abstract OBJECTIVE To evaluate the effect of knot location on the biomechanical strength and gapping characteristics of ex vivo canine gastrocnemius tenorrhaphy constructs. SAMPLE 36 cadaveric gastrocnemius tendons from 18 adult dogs. PROCEDURES Tendons were randomly assigned to 3 groups (12 tendons/group) and sharply transected and repaired by means of a core locking-loop suture with the knot at 1 of 3 locations (exposed on the external surface of the tendon, buried just underneath the external surface of the tendon, or buried internally between the apposed tendon ends). All repairs were performed with size-0 polypropylene suture. All constructs underwent a single load-to-failure test. Yield, failure, and peak forces, mode of failure, and forces required for 1- and 3-mm gap formation were compared among the 3 knot-location groups. RESULTS Mean yield, failure, and peak forces and mean forces required for 1- and 3-mm gap formation did not differ significantly among the 3 groups. The mode of failure also did not differ significantly among the 3 groups, and the majority (33/36 [92%]) of constructs failed owing to the suture pulling through the tendinous substance. CONCLUSIONS AND CLINICAL RELEVANCE Final knot location did not significantly affect the biomechanical strength and gapping characteristics of canine gastrocnemius tenorrhaphy constructs. Therefore, all 3 evaluated knot locations may be acceptable for tendon repair in dogs. In vivo studies are necessary to further elucidate the effect of knot location in suture patterns commonly used for tenorrhaphy on tendinous healing and collagenous remodeling at the repair site.

2020 ◽  
Vol 33 (03) ◽  
pp. 205-211 ◽  
Author(s):  
Christina J. Cocca ◽  
Daniel J. Duffy ◽  
Mariana E. Kersh ◽  
George E. Moore

Abstract Objective This article evaluates the effect of an interlocking horizontal mattress epitendinous suture (IHMES) in addition to a three-loop pulley (3LP) core suture for canine tendon repair. Study Design Twenty-eight cadaveric common calcaneal tendons were randomized, sharply transected and repaired with either a 3LP or 3LP + IHMES. Tensile loads required to create a 1- and 3-mm gap, yield, peak and failure loads, and mode of failure were analysed. Significance was set at p < 0.05. Results Mean ± standard deviation yield and failure force for 3LP + IHMES was 178.0 ± 45.3 N and 242.1 ± 47.8 N, respectively, which was significantly greater compared with 3LP alone, 97.9 ± 36.2 N and 119.3 ± 35.6 N (p < 0.0001). Occurrence of 3-mm gap formation was significantly less in the 3LP + IHMES group (p < 0.013). Mode of failure was significantly different between the groups (p < 0.001) with 3LP + IMHES patterns failing by suture breakage (13/14) compared with suture pull-through in the 3LP (11/14). Conclusion Addition of an epitendinous suture pattern significantly reduced gap formation between tendon ends and significantly increased loads at yield (1.8 × ), peak (2.0 × ) and failure (2.0 × ) force of repairs. Use of an epitendinous suture should be considered to significantly increase biomechanical strength of repairs; however, further in vivo testing is necessary to evaluate its effect on tendinous blood supply.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
William McCartney ◽  
Ciprian Ober ◽  
Maria Benito ◽  
Bryan MacDonald

Abstract Background The common calcanean tendon (Achilles tendon) is the strongest and largest tendon and is one of the most commonly affected by spontaneous rupture. Different suture techniques are used to repair the tendon rupture. We compare the biomechanical properties of three different modalities of suture pattern in a mechanical experiment in rabbits with the purpose of evaluating the use of polypropylene mesh augmentation for Achilles tendon repair to find out the best surgical option. Methods The study tests single cycle to failure tensile strength characteristics of three different combinations of the 3-loop pulley (3-LP) suture technique with polypropylene mesh, and statistically compares the biomechanical properties as the maximum load at failure for all 3-LP repair. Results The normal Achilles tendon—control group—failed at a mean load of 25.5 + 13.6; the experimental groups failed at a significantly lower load (p < 0.001), with the group of 3-LP suture with polypropylene mesh included in the suture being the more similar to controls, but all the groups exhibited statistically significant differences with regard to normal tendons (p < 0.001). The distance at which each group failed was also significant between control and experimental groups (p < 0.001) with the exception of the suture-only group and the group with the mesh over the suture (p = 0.15). Conclusion Results from this study suggest that incorporating the mesh within the suture provides benefit to the Achilles tendon repair by improving strength and resistance to pull through. However, further in vivo studies will be necessary to confirm these results and incorporate this technique to the routine human and veterinary surgery.


2021 ◽  
pp. 089875642110109
Author(s):  
Jane E. Pegg ◽  
Jennifer E. Rawlinson ◽  
Jennifer L Kelley ◽  
Eric Monnet

The purpose of the study was to determine the effect of suture pattern and repair length on the load to failure in an ex vivo canine gingival model. Healthy mandibular gingiva and mucosa were harvested from fresh cadavers euthanized for purposes unrelated to the study. Samples were randomly assigned by length and pattern. Lingual and buccal free gingival margins were apposed using a simple interrupted (SI), cruciate (XT), simple continuous (SC), or unidirectional knotless continuous barbed suture (SF) closure technique with USP 4-0 poliglecaprone 25i, ii applied over 2 lengths (3 cm and 6 cm). A custom template was used to ensure uniform suture bite application. Surgical time was recorded. Using a soft tissue mechanical testing frame, samples were tensioned to failure. Testing was video recorded and reviewed in conjunction with the tension trace data for tension at initial failure (Tfail) and maximum tension sustained (Tmax). Two factor ANOVA by length and pattern was performed followed by individual one way T-tests. Statistically significant findings were XT-SC-SF patterns were quicker to perform than SI. SF was more likely to fail by suture breakage than tissue tearing, and SF withstood less tension at the 3 cm length than SI-XT-SC. No significant difference was detected in Tmax or Tfail between SI and SC or XT. The study demonstrates that SC and XT are comparable to SI in tension resistance and faster to perform suggesting that SC and XT could replace SI for extraction site closure although further in vivo testing is required.


2018 ◽  
Vol 54 (2) ◽  
pp. 71-76 ◽  
Author(s):  
Nina R. Kieves ◽  
Alexander I. Krebs ◽  
Eric M. Zellner

ABSTRACT Initial and maximum intraluminal leak pressures of four enterotomy closures were compared. Closure patterns included a modified Gambee, simple interrupted, simple continuous, and skin staple closure. Forty-eight 3-cm enterotomy constructs were created from jejunal segments harvested from 12 dogs. Twelve each were randomly assigned to the four closure methods. Time of closure, as well as initial and maximum leak pressures, were measured and compared. The modified Gambee closure was the slowest closure to perform, with skin staple closure being the fastest. All suture patterns tested had higher mean initial leak pressures than reported physiologic intestinal pressures during peristalsis, although the skin staple closures resulted in leakage below normal physiologic pressure in several samples. The modified Gambee closure was able to sustain a significantly higher initial leak pressure than skin staple closures. The modified Gambee suture pattern had the greatest maximum leak pressure of all enterotomy closure patterns tested. Use of the modified Gambee suture pattern should be considered in enterotomy closure, although in vivo studies are required to determine if these differences are clinically significant.


1994 ◽  
Vol 72 (05) ◽  
pp. 659-662 ◽  
Author(s):  
S Bellucci ◽  
W Kedra ◽  
H Groussin ◽  
N Jaillet ◽  
P Molho-Sabatier ◽  
...  

SummaryA double-blind, placebo-controlled randomized study with BAY U3405, a specific thromboxane A2 (TX A2) receptor blocker, was performed in patients suffering from severe stade II limb arteriopathy. BAY U3405 or placebo was administered in 16 patients at 20 mg four times a day (from day 1 to day 3). Hemostatic studies were done before therapy, and on day 2 and day 3 under therapy. On day 3, BAY U3405 was shown to induce a highly statistically significant decrease of the velocity and the intensity of the aggregations mediated by arachidonic acid (56 ± 37% for the velocity, 58 ± 26% for the intensity) or by U46619 endoperoxide analogue (36 ± 35% for the velocity, 37 ± 27% for the intensity). Similar results were already observed on day 2. By contrast, such a decrease was not noticed with ADP mediated platelet aggregation. Furthermore, plasma levels of betathrombo-globulin and platelet factor 4 remained unchanged. Peripheral hemodynamic parameters were also studied. The peripheral blood flow was measured using a Doppler ultrasound; the pain free walking distance and the total walking ability distance were determined under standardized conditions on a treadmill. These last two parameters show a trend to improvement which nevertheless was not statistically significant. All together these results encourage further in vivo studies using BAY U3405 or related compounds on a long-term administration.


Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 887
Author(s):  
Yun-Ju Huang ◽  
Yu-Chieh Chen ◽  
Hsin-Yuan Chen ◽  
Yi-Fen Chiang ◽  
Mohamed Ali ◽  
...  

Dysmenorrhea is one of the most prevalent disorders in gynecology. Historically, adlay (Coix lachryma-jobi L. var. Ma-yuen Stapf.) has been explored for its anti-tumor, pain relief, anti-inflammatory, and analgesic effects. The aim of this study was to evaluate the effects of adlay seeds on the inhibition of uterine contraction and thus dysmenorrhea relief, in vitro and in vivo. HPLC-MS and GC were used to elucidate the ethyl acetate fraction of adlay testa ethanolic extract (ATE-EA) and ethyl acetate fraction of adlay hull ethanolic extract (AHE-EA). Elucidation yielded flavonoids, phytosterols, and fatty acids. Uterine leiomyomas and normal adjacent myometrial tissue were evaluated by oxytocin- and PG-induced uterine contractility. ATE-EA and AHE-EA suppressed uterine contraction induced by prostaglandin F2 alpha (PGF2α), oxytocin, carbachol, and high-KCl solution ex vivo. In addition, the external calcium (Ca2+) influx induced contraction, and increased Ca2+ concentration was inhibited by ATE-EA and AHE-EA on the uterine smooth muscle of rats. Furthermore, ATE-EA and AHE-EA effectively attenuated the contraction of normal human myometrium tissues more than adjacent uterine leiomyoma in response to PGF2α. 3,5,6,7,8,3′,4′-Heptamethoxyflavone and chrysoeriol produced a remarkable inhibition with values of IC50 = 24.91 and 25.59 µM, respectively. The experimental results showed that treatment with ATE-EA at 30 mg/day effectively decreased the writhing frequency both on the oxytocin-induced writhing test and acetic acid writhing test of the ICR mouse.


Sign in / Sign up

Export Citation Format

Share Document